Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328118464> ?p ?o ?g. }
- W4328118464 abstract "Purpose The stock market generates massive databases of various financial companies that are highly volatile and complex. To forecast daily stock values of these companies, investors frequently use technical analysis or fundamental analysis. Data mining techniques coupled with fundamental and technical analysis types have the potential to give satisfactory results for stock market prediction. In the current paper, an effort is made to investigate the accuracy of stock market predictions by using the combined approach of variables from technical and fundamental analysis for the creation of a data mining predictive model. Design/methodology/approach We chose 381 companies from the National Stock Exchange of India's CNX 500 index and conducted a two-stage data analysis. The first stage is identifying key fundamental variables and constructing a portfolio based on that study. Artificial neural network (ANN), support vector machines (SVM) and decision tree J48 were used to build the models. The second stage entails applying technical analysis to forecast price movements in the companies included in the portfolios. ANN and SVM techniques were used to create predictive models for all companies in the portfolios. We also estimated returns using trading decisions based on the model's output and then compared them to buy-and-hold returns and the return of the NIFTY 50 index, which served as a benchmark. Findings The results show that the returns of both the portfolios are higher than the benchmark buy-and-hold strategy return. It can be concluded that data mining techniques give better results, irrespective of the type of stock, and have the ability to make up for poor stocks. The comparison of returns of portfolios with the return of NIFTY as a benchmark also indicates that both the portfolios are generating higher returns as compared to the return generated by NIFTY. Originality/value As stock prices are influenced by both technical and fundamental indicators, the current paper explored the combined effect of technical analysis and fundamental analysis variables for Indian stock market prediction. Further, the results obtained by individual analysis have also been compared. The proposed method under study can also be utilized to determine whether to hold stocks for the long or short term using trend-based research." @default.
- W4328118464 created "2023-03-22" @default.
- W4328118464 creator A5001109451 @default.
- W4328118464 creator A5031031476 @default.
- W4328118464 date "2023-03-20" @default.
- W4328118464 modified "2023-09-27" @default.
- W4328118464 title "Data mining–based stock price prediction using hybridization of technical and fundamental analysis" @default.
- W4328118464 cites W1920661432 @default.
- W4328118464 cites W1965805826 @default.
- W4328118464 cites W1977033623 @default.
- W4328118464 cites W1980458013 @default.
- W4328118464 cites W1980836123 @default.
- W4328118464 cites W1992304691 @default.
- W4328118464 cites W2005346797 @default.
- W4328118464 cites W2012079387 @default.
- W4328118464 cites W2021664313 @default.
- W4328118464 cites W2041462006 @default.
- W4328118464 cites W2042105482 @default.
- W4328118464 cites W2049916782 @default.
- W4328118464 cites W2074231424 @default.
- W4328118464 cites W2080265874 @default.
- W4328118464 cites W2080450677 @default.
- W4328118464 cites W2085831731 @default.
- W4328118464 cites W2086694651 @default.
- W4328118464 cites W2094304287 @default.
- W4328118464 cites W2101465260 @default.
- W4328118464 cites W2108591703 @default.
- W4328118464 cites W2109181216 @default.
- W4328118464 cites W2120911092 @default.
- W4328118464 cites W2122590186 @default.
- W4328118464 cites W2145344497 @default.
- W4328118464 cites W2148999633 @default.
- W4328118464 cites W2166859533 @default.
- W4328118464 cites W2270937275 @default.
- W4328118464 cites W2547576265 @default.
- W4328118464 cites W2611231975 @default.
- W4328118464 cites W2801041858 @default.
- W4328118464 cites W2894060253 @default.
- W4328118464 cites W3121863257 @default.
- W4328118464 cites W3122593305 @default.
- W4328118464 cites W3124185353 @default.
- W4328118464 cites W3125462345 @default.
- W4328118464 cites W4293724041 @default.
- W4328118464 cites W4296753750 @default.
- W4328118464 doi "https://doi.org/10.1108/dta-04-2022-0142" @default.
- W4328118464 hasPublicationYear "2023" @default.
- W4328118464 type Work @default.
- W4328118464 citedByCount "0" @default.
- W4328118464 crossrefType "journal-article" @default.
- W4328118464 hasAuthorship W4328118464A5001109451 @default.
- W4328118464 hasAuthorship W4328118464A5031031476 @default.
- W4328118464 hasConcept C10138342 @default.
- W4328118464 hasConcept C117245426 @default.
- W4328118464 hasConcept C119857082 @default.
- W4328118464 hasConcept C12267149 @default.
- W4328118464 hasConcept C124101348 @default.
- W4328118464 hasConcept C127413603 @default.
- W4328118464 hasConcept C13280743 @default.
- W4328118464 hasConcept C149782125 @default.
- W4328118464 hasConcept C151730666 @default.
- W4328118464 hasConcept C162324750 @default.
- W4328118464 hasConcept C185798385 @default.
- W4328118464 hasConcept C200870193 @default.
- W4328118464 hasConcept C204036174 @default.
- W4328118464 hasConcept C205649164 @default.
- W4328118464 hasConcept C2780299701 @default.
- W4328118464 hasConcept C2780762169 @default.
- W4328118464 hasConcept C2780821815 @default.
- W4328118464 hasConcept C41008148 @default.
- W4328118464 hasConcept C50644808 @default.
- W4328118464 hasConcept C78519656 @default.
- W4328118464 hasConcept C84525736 @default.
- W4328118464 hasConcept C86803240 @default.
- W4328118464 hasConcept C88389905 @default.
- W4328118464 hasConceptScore W4328118464C10138342 @default.
- W4328118464 hasConceptScore W4328118464C117245426 @default.
- W4328118464 hasConceptScore W4328118464C119857082 @default.
- W4328118464 hasConceptScore W4328118464C12267149 @default.
- W4328118464 hasConceptScore W4328118464C124101348 @default.
- W4328118464 hasConceptScore W4328118464C127413603 @default.
- W4328118464 hasConceptScore W4328118464C13280743 @default.
- W4328118464 hasConceptScore W4328118464C149782125 @default.
- W4328118464 hasConceptScore W4328118464C151730666 @default.
- W4328118464 hasConceptScore W4328118464C162324750 @default.
- W4328118464 hasConceptScore W4328118464C185798385 @default.
- W4328118464 hasConceptScore W4328118464C200870193 @default.
- W4328118464 hasConceptScore W4328118464C204036174 @default.
- W4328118464 hasConceptScore W4328118464C205649164 @default.
- W4328118464 hasConceptScore W4328118464C2780299701 @default.
- W4328118464 hasConceptScore W4328118464C2780762169 @default.
- W4328118464 hasConceptScore W4328118464C2780821815 @default.
- W4328118464 hasConceptScore W4328118464C41008148 @default.
- W4328118464 hasConceptScore W4328118464C50644808 @default.
- W4328118464 hasConceptScore W4328118464C78519656 @default.
- W4328118464 hasConceptScore W4328118464C84525736 @default.
- W4328118464 hasConceptScore W4328118464C86803240 @default.
- W4328118464 hasConceptScore W4328118464C88389905 @default.
- W4328118464 hasLocation W43281184641 @default.
- W4328118464 hasOpenAccess W4328118464 @default.
- W4328118464 hasPrimaryLocation W43281184641 @default.