Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328119002> ?p ?o ?g. }
- W4328119002 endingPage "3286" @default.
- W4328119002 startingPage "3286" @default.
- W4328119002 abstract "Intelligent management of trees is essential for precise production management in orchards. Extracting components’ information from individual fruit trees is critical for analyzing and understanding their general growth. This study proposes a method to classify persimmon tree components based on hyperspectral LiDAR data. We extracted nine spectral feature parameters from the colorful point cloud data and performed preliminary classification using random forest, support vector machine, and backpropagation neural network methods. However, the misclassification of edge points with spectral information reduced the accuracy of the classification. To address this, we introduced a reprogramming strategy by fusing spatial constraints with spectral information, which increased the overall classification accuracy by 6.55%. We completed a 3D reconstruction of classification results in spatial coordinates. The proposed method is sensitive to edge points and shows excellent performance for classifying persimmon tree components." @default.
- W4328119002 created "2023-03-22" @default.
- W4328119002 creator A5000432967 @default.
- W4328119002 creator A5004794787 @default.
- W4328119002 creator A5005470113 @default.
- W4328119002 creator A5012283608 @default.
- W4328119002 creator A5019999723 @default.
- W4328119002 creator A5046399876 @default.
- W4328119002 creator A5074175188 @default.
- W4328119002 creator A5085673809 @default.
- W4328119002 date "2023-03-20" @default.
- W4328119002 modified "2023-10-14" @default.
- W4328119002 title "Feasibility Study on the Classification of Persimmon Trees’ Components Based on Hyperspectral LiDAR" @default.
- W4328119002 cites W1979678339 @default.
- W4328119002 cites W1985291094 @default.
- W4328119002 cites W1985555755 @default.
- W4328119002 cites W1999861104 @default.
- W4328119002 cites W2022576632 @default.
- W4328119002 cites W2030080266 @default.
- W4328119002 cites W2052992752 @default.
- W4328119002 cites W2089468765 @default.
- W4328119002 cites W2140940625 @default.
- W4328119002 cites W2148900376 @default.
- W4328119002 cites W2159961845 @default.
- W4328119002 cites W2501369945 @default.
- W4328119002 cites W2605756460 @default.
- W4328119002 cites W2606100861 @default.
- W4328119002 cites W2731832285 @default.
- W4328119002 cites W2763198744 @default.
- W4328119002 cites W2769616159 @default.
- W4328119002 cites W2783277262 @default.
- W4328119002 cites W2912720962 @default.
- W4328119002 cites W2942117263 @default.
- W4328119002 cites W2954109663 @default.
- W4328119002 cites W2974511126 @default.
- W4328119002 cites W3019614656 @default.
- W4328119002 cites W3095546493 @default.
- W4328119002 cites W3156982815 @default.
- W4328119002 cites W3194005268 @default.
- W4328119002 cites W3198990876 @default.
- W4328119002 cites W3200524750 @default.
- W4328119002 cites W4205941372 @default.
- W4328119002 cites W4210663264 @default.
- W4328119002 cites W4211131339 @default.
- W4328119002 cites W4212883601 @default.
- W4328119002 cites W4223999220 @default.
- W4328119002 cites W4285184065 @default.
- W4328119002 cites W4285732638 @default.
- W4328119002 cites W4285742025 @default.
- W4328119002 cites W4293685935 @default.
- W4328119002 cites W4296106520 @default.
- W4328119002 doi "https://doi.org/10.3390/s23063286" @default.
- W4328119002 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36991996" @default.
- W4328119002 hasPublicationYear "2023" @default.
- W4328119002 type Work @default.
- W4328119002 citedByCount "0" @default.
- W4328119002 crossrefType "journal-article" @default.
- W4328119002 hasAuthorship W4328119002A5000432967 @default.
- W4328119002 hasAuthorship W4328119002A5004794787 @default.
- W4328119002 hasAuthorship W4328119002A5005470113 @default.
- W4328119002 hasAuthorship W4328119002A5012283608 @default.
- W4328119002 hasAuthorship W4328119002A5019999723 @default.
- W4328119002 hasAuthorship W4328119002A5046399876 @default.
- W4328119002 hasAuthorship W4328119002A5074175188 @default.
- W4328119002 hasAuthorship W4328119002A5085673809 @default.
- W4328119002 hasBestOaLocation W43281190021 @default.
- W4328119002 hasConcept C113174947 @default.
- W4328119002 hasConcept C12267149 @default.
- W4328119002 hasConcept C124101348 @default.
- W4328119002 hasConcept C131979681 @default.
- W4328119002 hasConcept C134306372 @default.
- W4328119002 hasConcept C138885662 @default.
- W4328119002 hasConcept C153180895 @default.
- W4328119002 hasConcept C154945302 @default.
- W4328119002 hasConcept C159078339 @default.
- W4328119002 hasConcept C159620131 @default.
- W4328119002 hasConcept C162307627 @default.
- W4328119002 hasConcept C205649164 @default.
- W4328119002 hasConcept C2776401178 @default.
- W4328119002 hasConcept C33923547 @default.
- W4328119002 hasConcept C41008148 @default.
- W4328119002 hasConcept C41895202 @default.
- W4328119002 hasConcept C50644808 @default.
- W4328119002 hasConcept C51399673 @default.
- W4328119002 hasConcept C62649853 @default.
- W4328119002 hasConceptScore W4328119002C113174947 @default.
- W4328119002 hasConceptScore W4328119002C12267149 @default.
- W4328119002 hasConceptScore W4328119002C124101348 @default.
- W4328119002 hasConceptScore W4328119002C131979681 @default.
- W4328119002 hasConceptScore W4328119002C134306372 @default.
- W4328119002 hasConceptScore W4328119002C138885662 @default.
- W4328119002 hasConceptScore W4328119002C153180895 @default.
- W4328119002 hasConceptScore W4328119002C154945302 @default.
- W4328119002 hasConceptScore W4328119002C159078339 @default.
- W4328119002 hasConceptScore W4328119002C159620131 @default.
- W4328119002 hasConceptScore W4328119002C162307627 @default.
- W4328119002 hasConceptScore W4328119002C205649164 @default.
- W4328119002 hasConceptScore W4328119002C2776401178 @default.