Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328119009> ?p ?o ?g. }
- W4328119009 abstract "In the therapeutic process of COVID-19, the majority of indicators that physicians have for assisting treatment have come from clinical tests represented by proteins, metabolites, and immune levels in patients' blood. Therefore, this study constructs an individualized treatment model based on deep learning methods, aiming to realize timely intervention based on clinical test indicator data of COVID-19 patients and provide an important theoretical basis for optimizing medical resource allocation.This study collected clinical data from a total of 1,799 individuals, including 560 controls for non-respiratory infectious diseases (Negative), 681 controls for other respiratory virus infections (Other), and 558 coronavirus infections (Positive) for COVID-19. We first used the Student T-test to screen for statistically significant differences (Pvalue<0.05); we then used the Adaptive-Lasso method stepwise regression to screen the characteristic variables and filter the features with low importance; we then used analysis of covariance to calculate the correlation between variables and filter the highly correlated features; and finally, we analyzed the feature contribution and screened the best combination of features.Feature engineering reduced the feature set to 13 feature combinations. The correlation coefficient between the projected results of the artificial intelligence-based individualized diagnostic model and the fitted curve of the actual values in the test group was 0.9449 which could be applied to the clinical prognosis of COVID-19. In addition, the depletion of platelets in patients with COVID-19 is an important factor affecting their severe deterioration. With the progression of COVID-19, there is a slight decrease in the total number of platelets in the patient's body, particularly as the volume of larger platelets sharply decreases. The importance of plateletCV (count*mean platelet volume) in evaluating the severity of COVID-19 patients is higher than the count of platelets and mean platelet volume.In general, we found that for patients with COVID-19, the increase in mean platelet volume was a predictor for SARS-Cov-2. The rapid decrease of platelet volume and the decrease of total platelet volume are dangerous signals for the aggravation of SARS-Cov-2 infection. The analysis and modeling results of this study provide a new perspective for individualized accurate diagnosis and treatment of clinical COVID-19 patients." @default.
- W4328119009 created "2023-03-22" @default.
- W4328119009 creator A5016841529 @default.
- W4328119009 creator A5030420636 @default.
- W4328119009 creator A5037923646 @default.
- W4328119009 creator A5054579976 @default.
- W4328119009 creator A5075117437 @default.
- W4328119009 creator A5081736415 @default.
- W4328119009 date "2023-03-21" @default.
- W4328119009 modified "2023-10-14" @default.
- W4328119009 title "Active regression model for clinical grading of COVID-19" @default.
- W4328119009 cites W2028137929 @default.
- W4328119009 cites W2664267452 @default.
- W4328119009 cites W2791851888 @default.
- W4328119009 cites W2890596001 @default.
- W4328119009 cites W2999318660 @default.
- W4328119009 cites W3001118548 @default.
- W4328119009 cites W3008028633 @default.
- W4328119009 cites W3009582878 @default.
- W4328119009 cites W3012320055 @default.
- W4328119009 cites W3013758358 @default.
- W4328119009 cites W3013893137 @default.
- W4328119009 cites W3020512604 @default.
- W4328119009 cites W3020653337 @default.
- W4328119009 cites W3026420023 @default.
- W4328119009 cites W3032704650 @default.
- W4328119009 cites W3036505559 @default.
- W4328119009 cites W3036602039 @default.
- W4328119009 cites W3047913942 @default.
- W4328119009 cites W3048755855 @default.
- W4328119009 cites W3086407960 @default.
- W4328119009 cites W3087156149 @default.
- W4328119009 cites W3087345531 @default.
- W4328119009 cites W3093190310 @default.
- W4328119009 cites W3096640075 @default.
- W4328119009 cites W3104810384 @default.
- W4328119009 cites W3107122234 @default.
- W4328119009 cites W3112267003 @default.
- W4328119009 cites W3119464161 @default.
- W4328119009 cites W3131820551 @default.
- W4328119009 cites W3135280315 @default.
- W4328119009 cites W3162803369 @default.
- W4328119009 cites W3171440887 @default.
- W4328119009 cites W3171710718 @default.
- W4328119009 cites W3175908921 @default.
- W4328119009 cites W3183969151 @default.
- W4328119009 cites W3201328882 @default.
- W4328119009 cites W3205626500 @default.
- W4328119009 cites W4200370825 @default.
- W4328119009 cites W4200427314 @default.
- W4328119009 cites W4206896921 @default.
- W4328119009 cites W4212907053 @default.
- W4328119009 cites W4214817940 @default.
- W4328119009 cites W4220998927 @default.
- W4328119009 cites W4225716729 @default.
- W4328119009 cites W4281384635 @default.
- W4328119009 cites W4293499312 @default.
- W4328119009 cites W4296100200 @default.
- W4328119009 cites W4297002809 @default.
- W4328119009 cites W4297888445 @default.
- W4328119009 cites W4300773045 @default.
- W4328119009 doi "https://doi.org/10.3389/fimmu.2023.1141996" @default.
- W4328119009 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37026015" @default.
- W4328119009 hasPublicationYear "2023" @default.
- W4328119009 type Work @default.
- W4328119009 citedByCount "0" @default.
- W4328119009 crossrefType "journal-article" @default.
- W4328119009 hasAuthorship W4328119009A5016841529 @default.
- W4328119009 hasAuthorship W4328119009A5030420636 @default.
- W4328119009 hasAuthorship W4328119009A5037923646 @default.
- W4328119009 hasAuthorship W4328119009A5054579976 @default.
- W4328119009 hasAuthorship W4328119009A5075117437 @default.
- W4328119009 hasAuthorship W4328119009A5081736415 @default.
- W4328119009 hasBestOaLocation W43281190091 @default.
- W4328119009 hasConcept C105795698 @default.
- W4328119009 hasConcept C117220453 @default.
- W4328119009 hasConcept C119857082 @default.
- W4328119009 hasConcept C126322002 @default.
- W4328119009 hasConcept C148483581 @default.
- W4328119009 hasConcept C152877465 @default.
- W4328119009 hasConcept C154945302 @default.
- W4328119009 hasConcept C170964787 @default.
- W4328119009 hasConcept C2524010 @default.
- W4328119009 hasConcept C2779134260 @default.
- W4328119009 hasConcept C3008058167 @default.
- W4328119009 hasConcept C33923547 @default.
- W4328119009 hasConcept C41008148 @default.
- W4328119009 hasConcept C524204448 @default.
- W4328119009 hasConcept C71924100 @default.
- W4328119009 hasConcept C83546350 @default.
- W4328119009 hasConceptScore W4328119009C105795698 @default.
- W4328119009 hasConceptScore W4328119009C117220453 @default.
- W4328119009 hasConceptScore W4328119009C119857082 @default.
- W4328119009 hasConceptScore W4328119009C126322002 @default.
- W4328119009 hasConceptScore W4328119009C148483581 @default.
- W4328119009 hasConceptScore W4328119009C152877465 @default.
- W4328119009 hasConceptScore W4328119009C154945302 @default.
- W4328119009 hasConceptScore W4328119009C170964787 @default.
- W4328119009 hasConceptScore W4328119009C2524010 @default.
- W4328119009 hasConceptScore W4328119009C2779134260 @default.