Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328119673> ?p ?o ?g. }
- W4328119673 abstract "Abstract The objective of this study is to predict road flooding risks based on topographic, hydrologic, and temporal precipitation features using machine learning models. Existing road inundation studies either lack empirical data for model validations or focus mainly on road inundation exposure assessment based on flood maps. This study addresses this limitation by using crowdsourced and fine-grained traffic data as an indicator of road inundation, and topographic, hydrologic, and temporal precipitation features as predictor variables. Two tree-based machine learning models (random forest and AdaBoost) were then tested and trained for predicting road inundations in the contexts of 2017 Hurricane Harvey and 2019 Tropical Storm Imelda in Harris County, Texas. The findings from Hurricane Harvey indicate that precipitation is the most important feature for predicting road inundation susceptibility, and that topographic features are more critical than hydrologic features for predicting road inundations in both storm cases. The random forest and AdaBoost models had relatively high AUC scores (0.860 and 0.810 for Harvey respectively and 0.790 and 0.720 for Imelda respectively) with the random forest model performing better in both cases. The random forest model showed stable performance for Harvey, while varying significantly for Imelda. This study advances the emerging field of smart flood resilience in terms of predictive flood risk mapping at the road level. In particular, such models could help impacted communities and emergency management agencies develop better preparedness and response strategies with improved situational awareness of road inundation likelihood as an extreme weather event unfolds." @default.
- W4328119673 created "2023-03-22" @default.
- W4328119673 creator A5023165780 @default.
- W4328119673 creator A5035977345 @default.
- W4328119673 creator A5041323094 @default.
- W4328119673 creator A5043318930 @default.
- W4328119673 creator A5050909309 @default.
- W4328119673 creator A5053335194 @default.
- W4328119673 creator A5072913121 @default.
- W4328119673 creator A5080275400 @default.
- W4328119673 creator A5082761641 @default.
- W4328119673 date "2023-03-21" @default.
- W4328119673 modified "2023-09-26" @default.
- W4328119673 title "Predicting road flooding risk with crowdsourced reports and fine-grained traffic data" @default.
- W4328119673 cites W1584236903 @default.
- W4328119673 cites W1774599919 @default.
- W4328119673 cites W1926283838 @default.
- W4328119673 cites W1972848619 @default.
- W4328119673 cites W1999565318 @default.
- W4328119673 cites W2012781825 @default.
- W4328119673 cites W2016410066 @default.
- W4328119673 cites W2046026089 @default.
- W4328119673 cites W2088733802 @default.
- W4328119673 cites W2101044141 @default.
- W4328119673 cites W2157970334 @default.
- W4328119673 cites W2158618019 @default.
- W4328119673 cites W2161548576 @default.
- W4328119673 cites W2192455847 @default.
- W4328119673 cites W2303083012 @default.
- W4328119673 cites W2493156582 @default.
- W4328119673 cites W2558186269 @default.
- W4328119673 cites W2581588189 @default.
- W4328119673 cites W2596101539 @default.
- W4328119673 cites W2606804832 @default.
- W4328119673 cites W2625667673 @default.
- W4328119673 cites W2687996299 @default.
- W4328119673 cites W2885306791 @default.
- W4328119673 cites W2886751985 @default.
- W4328119673 cites W2898215242 @default.
- W4328119673 cites W2903266193 @default.
- W4328119673 cites W2938393691 @default.
- W4328119673 cites W2947465405 @default.
- W4328119673 cites W2948264248 @default.
- W4328119673 cites W2963475465 @default.
- W4328119673 cites W2975358916 @default.
- W4328119673 cites W2980053271 @default.
- W4328119673 cites W2981532286 @default.
- W4328119673 cites W2982573076 @default.
- W4328119673 cites W2989700724 @default.
- W4328119673 cites W2991494633 @default.
- W4328119673 cites W2993767981 @default.
- W4328119673 cites W2997072997 @default.
- W4328119673 cites W3007062215 @default.
- W4328119673 cites W3028574233 @default.
- W4328119673 cites W3043573314 @default.
- W4328119673 cites W3044165695 @default.
- W4328119673 cites W3097540554 @default.
- W4328119673 cites W3097810148 @default.
- W4328119673 cites W3098301109 @default.
- W4328119673 cites W3150379522 @default.
- W4328119673 cites W3157786111 @default.
- W4328119673 cites W3162683200 @default.
- W4328119673 cites W3169044135 @default.
- W4328119673 cites W3177096689 @default.
- W4328119673 cites W4244895750 @default.
- W4328119673 cites W605129406 @default.
- W4328119673 doi "https://doi.org/10.1007/s43762-023-00082-1" @default.
- W4328119673 hasPublicationYear "2023" @default.
- W4328119673 type Work @default.
- W4328119673 citedByCount "0" @default.
- W4328119673 crossrefType "journal-article" @default.
- W4328119673 hasAuthorship W4328119673A5023165780 @default.
- W4328119673 hasAuthorship W4328119673A5035977345 @default.
- W4328119673 hasAuthorship W4328119673A5041323094 @default.
- W4328119673 hasAuthorship W4328119673A5043318930 @default.
- W4328119673 hasAuthorship W4328119673A5050909309 @default.
- W4328119673 hasAuthorship W4328119673A5053335194 @default.
- W4328119673 hasAuthorship W4328119673A5072913121 @default.
- W4328119673 hasAuthorship W4328119673A5080275400 @default.
- W4328119673 hasAuthorship W4328119673A5082761641 @default.
- W4328119673 hasBestOaLocation W43281196731 @default.
- W4328119673 hasConcept C105306849 @default.
- W4328119673 hasConcept C107826830 @default.
- W4328119673 hasConcept C119857082 @default.
- W4328119673 hasConcept C12267149 @default.
- W4328119673 hasConcept C127413603 @default.
- W4328119673 hasConcept C141404830 @default.
- W4328119673 hasConcept C153294291 @default.
- W4328119673 hasConcept C15744967 @default.
- W4328119673 hasConcept C166957645 @default.
- W4328119673 hasConcept C169258074 @default.
- W4328119673 hasConcept C17744445 @default.
- W4328119673 hasConcept C186594467 @default.
- W4328119673 hasConcept C187320778 @default.
- W4328119673 hasConcept C199539241 @default.
- W4328119673 hasConcept C205649164 @default.
- W4328119673 hasConcept C2777042776 @default.
- W4328119673 hasConcept C39432304 @default.
- W4328119673 hasConcept C41008148 @default.
- W4328119673 hasConcept C45804977 @default.