Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328120707> ?p ?o ?g. }
- W4328120707 abstract "Abstract Channel dimensions (width and depth) at varying flows influence a host of instream ecological processes, as well as habitat and biotic features; they are a major consideration in stream habitat restoration and instream flow assessments. Models of widths and depths are often used to assess climate change vulnerability, develop endangered species recovery plans, and model water quality. However, development and application of such models require specific skillsets and resources. To facilitate acquisition of such estimates, we created a dataset of modeled channel dimensions for perennial stream segments across the conterminous United States. We used random forest models to predict wetted width, thalweg depth, bankfull width, and bankfull depth from several thousand field measurements of the National Rivers and Streams Assessment. Observed channel widths varied from <5 to >2000 m and depths varied from <2 to >125 m. Metrics of watershed area, runoff, slope, land use, and more were used as model predictors. The models had high pseudo R 2 values (0.70–0.91) and median absolute errors within ±6% to ±21% of the interquartile range of measured values across 10 stream orders. Predicted channel dimensions can be joined to 1.1 million stream segments of the 1:100 K resolution National Hydrography Dataset Plus (version 2.1). These predictions, combined with a rapidly growing body of nationally available data, will further enhance our ability to study and protect aquatic resources." @default.
- W4328120707 created "2023-03-22" @default.
- W4328120707 creator A5012172998 @default.
- W4328120707 creator A5016057871 @default.
- W4328120707 creator A5055737823 @default.
- W4328120707 creator A5065513902 @default.
- W4328120707 date "2023-03-21" @default.
- W4328120707 modified "2023-10-14" @default.
- W4328120707 title "Random forest models to estimate bankfull and low flow channel widths and depths across the conterminous United States" @default.
- W4328120707 cites W1471436312 @default.
- W4328120707 cites W1587869157 @default.
- W4328120707 cites W1716442688 @default.
- W4328120707 cites W1895164393 @default.
- W4328120707 cites W1899166841 @default.
- W4328120707 cites W1971302797 @default.
- W4328120707 cites W1977886272 @default.
- W4328120707 cites W1978537006 @default.
- W4328120707 cites W1982735290 @default.
- W4328120707 cites W1988538876 @default.
- W4328120707 cites W1990559317 @default.
- W4328120707 cites W1991036062 @default.
- W4328120707 cites W1997211490 @default.
- W4328120707 cites W2003912780 @default.
- W4328120707 cites W2006536258 @default.
- W4328120707 cites W2023312805 @default.
- W4328120707 cites W2023374654 @default.
- W4328120707 cites W2024878820 @default.
- W4328120707 cites W2027988805 @default.
- W4328120707 cites W2028360733 @default.
- W4328120707 cites W2030567569 @default.
- W4328120707 cites W2032174504 @default.
- W4328120707 cites W2035089512 @default.
- W4328120707 cites W2037101712 @default.
- W4328120707 cites W2041392558 @default.
- W4328120707 cites W2042984783 @default.
- W4328120707 cites W2045202658 @default.
- W4328120707 cites W2049384829 @default.
- W4328120707 cites W2049867669 @default.
- W4328120707 cites W2061151747 @default.
- W4328120707 cites W2066601678 @default.
- W4328120707 cites W2071258520 @default.
- W4328120707 cites W2080439372 @default.
- W4328120707 cites W2085663892 @default.
- W4328120707 cites W2088038903 @default.
- W4328120707 cites W2099534828 @default.
- W4328120707 cites W2105148040 @default.
- W4328120707 cites W2106504248 @default.
- W4328120707 cites W2112863519 @default.
- W4328120707 cites W2114476137 @default.
- W4328120707 cites W2121027728 @default.
- W4328120707 cites W2127073798 @default.
- W4328120707 cites W2131976765 @default.
- W4328120707 cites W2132757147 @default.
- W4328120707 cites W2136831558 @default.
- W4328120707 cites W2137285569 @default.
- W4328120707 cites W2139086914 @default.
- W4328120707 cites W2149697467 @default.
- W4328120707 cites W2153339530 @default.
- W4328120707 cites W2156182980 @default.
- W4328120707 cites W2170225449 @default.
- W4328120707 cites W2193821370 @default.
- W4328120707 cites W2328399833 @default.
- W4328120707 cites W2335664058 @default.
- W4328120707 cites W2340735115 @default.
- W4328120707 cites W2505328891 @default.
- W4328120707 cites W2511178866 @default.
- W4328120707 cites W2622801057 @default.
- W4328120707 cites W2661540110 @default.
- W4328120707 cites W2738247240 @default.
- W4328120707 cites W2752577117 @default.
- W4328120707 cites W2769928827 @default.
- W4328120707 cites W2802151013 @default.
- W4328120707 cites W2803989380 @default.
- W4328120707 cites W2891628108 @default.
- W4328120707 cites W2893216251 @default.
- W4328120707 cites W2893773218 @default.
- W4328120707 cites W2902125084 @default.
- W4328120707 cites W2911964244 @default.
- W4328120707 cites W2929906181 @default.
- W4328120707 cites W2947551317 @default.
- W4328120707 cites W2972170785 @default.
- W4328120707 cites W2982995378 @default.
- W4328120707 cites W3042658175 @default.
- W4328120707 cites W3048782430 @default.
- W4328120707 cites W3081213963 @default.
- W4328120707 cites W3087535322 @default.
- W4328120707 cites W3106063097 @default.
- W4328120707 cites W3135053685 @default.
- W4328120707 cites W3135468375 @default.
- W4328120707 cites W3135887652 @default.
- W4328120707 cites W3175149180 @default.
- W4328120707 cites W3194626089 @default.
- W4328120707 cites W3205430804 @default.
- W4328120707 cites W3214364358 @default.
- W4328120707 doi "https://doi.org/10.1111/1752-1688.13116" @default.
- W4328120707 hasPublicationYear "2023" @default.
- W4328120707 type Work @default.
- W4328120707 citedByCount "0" @default.
- W4328120707 crossrefType "journal-article" @default.
- W4328120707 hasAuthorship W4328120707A5012172998 @default.