Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328120714> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4328120714 endingPage "52" @default.
- W4328120714 startingPage "42" @default.
- W4328120714 abstract "During the last two decades, there has been remarkable growth in the processing capacity of computers and the evolution of digital cameras. As a result, the thermographic technique and thermal analysis became more applied in electromechanical maintenance due to the low measuring device cost. Simultaneously, new methods based on Deep Learning focused on image and video processing have emerged. In this sense, this contribution aims to verify the applicability of using the deep learning technique of convolutional neural networks to classify patterns of thermographic images of a bench grinder. The methodology used was the collection of thermographic pictures of a bench grinder after starting, without, and after applying loads to the discs. This procedure induced a temperature increase in the grinding machine housing since some types of faults in electric motors can be diagnosed due to over-temperature by thermographic inspection. Furthermore, a Python computational code was developed using a convolutional neural network to classify different grinder operation profiles based on thermal images. In conclusion, the technique proved promising for diagnosing motor failures by thermography and can be implemented in automatic predictive maintenance routines." @default.
- W4328120714 created "2023-03-22" @default.
- W4328120714 creator A5002367394 @default.
- W4328120714 creator A5018441240 @default.
- W4328120714 creator A5040898364 @default.
- W4328120714 creator A5045833377 @default.
- W4328120714 creator A5048441210 @default.
- W4328120714 creator A5086483445 @default.
- W4328120714 date "2023-03-21" @default.
- W4328120714 modified "2023-09-30" @default.
- W4328120714 title "Application of Deep Learning Techniques in the Development of Predictive Maintenance and Fault Detection in Electric Motors" @default.
- W4328120714 doi "https://doi.org/10.9734/acri/2023/v23i3564" @default.
- W4328120714 hasPublicationYear "2023" @default.
- W4328120714 type Work @default.
- W4328120714 citedByCount "0" @default.
- W4328120714 crossrefType "journal-article" @default.
- W4328120714 hasAuthorship W4328120714A5002367394 @default.
- W4328120714 hasAuthorship W4328120714A5018441240 @default.
- W4328120714 hasAuthorship W4328120714A5040898364 @default.
- W4328120714 hasAuthorship W4328120714A5045833377 @default.
- W4328120714 hasAuthorship W4328120714A5048441210 @default.
- W4328120714 hasAuthorship W4328120714A5086483445 @default.
- W4328120714 hasBestOaLocation W43281207141 @default.
- W4328120714 hasConcept C108583219 @default.
- W4328120714 hasConcept C111919701 @default.
- W4328120714 hasConcept C120665830 @default.
- W4328120714 hasConcept C121332964 @default.
- W4328120714 hasConcept C127313418 @default.
- W4328120714 hasConcept C127413603 @default.
- W4328120714 hasConcept C152745839 @default.
- W4328120714 hasConcept C154945302 @default.
- W4328120714 hasConcept C158355884 @default.
- W4328120714 hasConcept C165205528 @default.
- W4328120714 hasConcept C172707124 @default.
- W4328120714 hasConcept C175551986 @default.
- W4328120714 hasConcept C184304460 @default.
- W4328120714 hasConcept C200601418 @default.
- W4328120714 hasConcept C2777571299 @default.
- W4328120714 hasConcept C2779222261 @default.
- W4328120714 hasConcept C41008148 @default.
- W4328120714 hasConcept C50644808 @default.
- W4328120714 hasConcept C519991488 @default.
- W4328120714 hasConcept C70452415 @default.
- W4328120714 hasConcept C78519656 @default.
- W4328120714 hasConcept C81363708 @default.
- W4328120714 hasConceptScore W4328120714C108583219 @default.
- W4328120714 hasConceptScore W4328120714C111919701 @default.
- W4328120714 hasConceptScore W4328120714C120665830 @default.
- W4328120714 hasConceptScore W4328120714C121332964 @default.
- W4328120714 hasConceptScore W4328120714C127313418 @default.
- W4328120714 hasConceptScore W4328120714C127413603 @default.
- W4328120714 hasConceptScore W4328120714C152745839 @default.
- W4328120714 hasConceptScore W4328120714C154945302 @default.
- W4328120714 hasConceptScore W4328120714C158355884 @default.
- W4328120714 hasConceptScore W4328120714C165205528 @default.
- W4328120714 hasConceptScore W4328120714C172707124 @default.
- W4328120714 hasConceptScore W4328120714C175551986 @default.
- W4328120714 hasConceptScore W4328120714C184304460 @default.
- W4328120714 hasConceptScore W4328120714C200601418 @default.
- W4328120714 hasConceptScore W4328120714C2777571299 @default.
- W4328120714 hasConceptScore W4328120714C2779222261 @default.
- W4328120714 hasConceptScore W4328120714C41008148 @default.
- W4328120714 hasConceptScore W4328120714C50644808 @default.
- W4328120714 hasConceptScore W4328120714C519991488 @default.
- W4328120714 hasConceptScore W4328120714C70452415 @default.
- W4328120714 hasConceptScore W4328120714C78519656 @default.
- W4328120714 hasConceptScore W4328120714C81363708 @default.
- W4328120714 hasIssue "3" @default.
- W4328120714 hasLocation W43281207141 @default.
- W4328120714 hasOpenAccess W4328120714 @default.
- W4328120714 hasPrimaryLocation W43281207141 @default.
- W4328120714 hasRelatedWork W1977527168 @default.
- W4328120714 hasRelatedWork W2731899572 @default.
- W4328120714 hasRelatedWork W2999805992 @default.
- W4328120714 hasRelatedWork W3011074480 @default.
- W4328120714 hasRelatedWork W3116150086 @default.
- W4328120714 hasRelatedWork W3133861977 @default.
- W4328120714 hasRelatedWork W4200173597 @default.
- W4328120714 hasRelatedWork W4291897433 @default.
- W4328120714 hasRelatedWork W4312417841 @default.
- W4328120714 hasRelatedWork W4321369474 @default.
- W4328120714 hasVolume "23" @default.
- W4328120714 isParatext "false" @default.
- W4328120714 isRetracted "false" @default.
- W4328120714 workType "article" @default.