Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328120766> ?p ?o ?g. }
- W4328120766 endingPage "382" @default.
- W4328120766 startingPage "382" @default.
- W4328120766 abstract "Diffuse optical tomography (DOT) is a non-invasive method for detecting breast cancer; however, it struggles to produce high-quality images due to the complexity of scattered light and the limitations of traditional image reconstruction algorithms. These algorithms can be affected by boundary conditions and have a low imaging accuracy, a shallow imaging depth, a long computation time, and a high signal-to-noise ratio. However, machine learning can potentially improve the performance of DOT by being better equipped to solve inverse problems, perform regression, classify medical images, and reconstruct biomedical images. In this study, we utilized a machine learning model called XGBoost to detect tumors in inhomogeneous breasts and applied a post-processing technique based on genetic programming to improve accuracy. The proposed algorithm was tested using simulated DOT measurements from complex inhomogeneous breasts and evaluated using the cosine similarity metrics and root mean square error loss. The results showed that the use of XGBoost and genetic programming in DOT could lead to more accurate and non-invasive detection of tumors in inhomogeneous breasts compared to traditional methods, with the reconstructed breasts having an average cosine similarity of more than 0.97 ± 0.07 and average root mean square error of around 0.1270 ± 0.0031 compared to the ground truth." @default.
- W4328120766 created "2023-03-22" @default.
- W4328120766 creator A5034054385 @default.
- W4328120766 creator A5051220381 @default.
- W4328120766 creator A5062808501 @default.
- W4328120766 date "2023-03-21" @default.
- W4328120766 modified "2023-09-26" @default.
- W4328120766 title "Machine Learning Diffuse Optical Tomography Using Extreme Gradient Boosting and Genetic Programming" @default.
- W4328120766 cites W1589720045 @default.
- W4328120766 cites W2000982516 @default.
- W4328120766 cites W2026592776 @default.
- W4328120766 cites W2040492000 @default.
- W4328120766 cites W2044425120 @default.
- W4328120766 cites W2045833407 @default.
- W4328120766 cites W2079247656 @default.
- W4328120766 cites W2089543701 @default.
- W4328120766 cites W2097683070 @default.
- W4328120766 cites W2102994171 @default.
- W4328120766 cites W2226432548 @default.
- W4328120766 cites W2535215239 @default.
- W4328120766 cites W2594833348 @default.
- W4328120766 cites W2731944708 @default.
- W4328120766 cites W2901482670 @default.
- W4328120766 cites W2944345944 @default.
- W4328120766 cites W2991319547 @default.
- W4328120766 cites W2998199538 @default.
- W4328120766 cites W3008252701 @default.
- W4328120766 cites W3014677970 @default.
- W4328120766 cites W3015115442 @default.
- W4328120766 cites W3024577264 @default.
- W4328120766 cites W3046991059 @default.
- W4328120766 cites W3047239282 @default.
- W4328120766 cites W3100810380 @default.
- W4328120766 cites W3102476541 @default.
- W4328120766 cites W3105645596 @default.
- W4328120766 cites W3136160104 @default.
- W4328120766 cites W3139265876 @default.
- W4328120766 cites W3173972669 @default.
- W4328120766 cites W3193562516 @default.
- W4328120766 cites W3207759772 @default.
- W4328120766 cites W4206699267 @default.
- W4328120766 cites W4221001699 @default.
- W4328120766 cites W4229014074 @default.
- W4328120766 cites W4229071766 @default.
- W4328120766 cites W4285304999 @default.
- W4328120766 cites W4285656733 @default.
- W4328120766 cites W4292250219 @default.
- W4328120766 cites W4293427701 @default.
- W4328120766 cites W4295205481 @default.
- W4328120766 cites W4297243311 @default.
- W4328120766 cites W4308969649 @default.
- W4328120766 doi "https://doi.org/10.3390/bioengineering10030382" @default.
- W4328120766 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36978773" @default.
- W4328120766 hasPublicationYear "2023" @default.
- W4328120766 type Work @default.
- W4328120766 citedByCount "0" @default.
- W4328120766 crossrefType "journal-article" @default.
- W4328120766 hasAuthorship W4328120766A5034054385 @default.
- W4328120766 hasAuthorship W4328120766A5051220381 @default.
- W4328120766 hasAuthorship W4328120766A5062808501 @default.
- W4328120766 hasBestOaLocation W43281207661 @default.
- W4328120766 hasConcept C103278499 @default.
- W4328120766 hasConcept C105795698 @default.
- W4328120766 hasConcept C110332635 @default.
- W4328120766 hasConcept C11413529 @default.
- W4328120766 hasConcept C115961682 @default.
- W4328120766 hasConcept C121608353 @default.
- W4328120766 hasConcept C126322002 @default.
- W4328120766 hasConcept C139945424 @default.
- W4328120766 hasConcept C141379421 @default.
- W4328120766 hasConcept C145417883 @default.
- W4328120766 hasConcept C146849305 @default.
- W4328120766 hasConcept C153180895 @default.
- W4328120766 hasConcept C154945302 @default.
- W4328120766 hasConcept C2780472235 @default.
- W4328120766 hasConcept C31972630 @default.
- W4328120766 hasConcept C33923547 @default.
- W4328120766 hasConcept C41008148 @default.
- W4328120766 hasConcept C45374587 @default.
- W4328120766 hasConcept C46686674 @default.
- W4328120766 hasConcept C530470458 @default.
- W4328120766 hasConcept C71924100 @default.
- W4328120766 hasConceptScore W4328120766C103278499 @default.
- W4328120766 hasConceptScore W4328120766C105795698 @default.
- W4328120766 hasConceptScore W4328120766C110332635 @default.
- W4328120766 hasConceptScore W4328120766C11413529 @default.
- W4328120766 hasConceptScore W4328120766C115961682 @default.
- W4328120766 hasConceptScore W4328120766C121608353 @default.
- W4328120766 hasConceptScore W4328120766C126322002 @default.
- W4328120766 hasConceptScore W4328120766C139945424 @default.
- W4328120766 hasConceptScore W4328120766C141379421 @default.
- W4328120766 hasConceptScore W4328120766C145417883 @default.
- W4328120766 hasConceptScore W4328120766C146849305 @default.
- W4328120766 hasConceptScore W4328120766C153180895 @default.
- W4328120766 hasConceptScore W4328120766C154945302 @default.
- W4328120766 hasConceptScore W4328120766C2780472235 @default.
- W4328120766 hasConceptScore W4328120766C31972630 @default.
- W4328120766 hasConceptScore W4328120766C33923547 @default.