Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328121284> ?p ?o ?g. }
- W4328121284 endingPage "132" @default.
- W4328121284 startingPage "132" @default.
- W4328121284 abstract "Lane line detection is a fundamental and critical task for geographic information perception of driverless and advanced assisted driving. However, the traditional lane line detection method relies on manual adjustment of parameters, and has poor universality, a heavy workload, and poor robustness. Most deep learning-based methods make it difficult to effectively balance accuracy and efficiency. To improve the comprehensive perception ability of lane line geographic information in a natural traffic environment, a lane line detection algorithm based on a mixed-attention mechanism residual network (ResNet) and row anchor classification is proposed. A mixed-attention mechanism is added after the backbone network convolution, normalization and activation layers, respectively, so that the model can focus more on important lane line features to improve the pertinence and efficiency of feature extraction. In addition, to achieve faster detection speed and solve the problem of no vision, the method of lane line location selection and classification based on the row direction is used to detect whether there are lane lines in each candidate point according to the row anchor, reducing the high computational complexity caused by segmentation on a pixel-by-pixel basis of traditional semantic segmentation. Based on TuSimple and CurveLane datasets, multi-scene, multi-environment, multi-linear road image datasets and video sequences are integrated and self-built, and several experiments are designed and tested to verify the effectiveness of the proposed method. The test accuracy of the mixed-attention mechanism network model reached 95.96%, and the average time efficiency is nearly 180 FPS, which can achieve a high level of accuracy and real-time detection process. Therefore, the proposed method can meet the safety perception effect of lane line geographic information in natural traffic environments, and achieve an effective balance between the accuracy and efficiency of actual road application scenarios." @default.
- W4328121284 created "2023-03-22" @default.
- W4328121284 creator A5016140949 @default.
- W4328121284 creator A5027650848 @default.
- W4328121284 creator A5031845169 @default.
- W4328121284 creator A5049962512 @default.
- W4328121284 creator A5061305651 @default.
- W4328121284 creator A5070423020 @default.
- W4328121284 creator A5076122416 @default.
- W4328121284 creator A5082630089 @default.
- W4328121284 date "2023-03-20" @default.
- W4328121284 modified "2023-09-26" @default.
- W4328121284 title "A Novel Lane Line Detection Algorithm for Driverless Geographic Information Perception Using Mixed-Attention Mechanism ResNet and Row Anchor Classification" @default.
- W4328121284 cites W1183861445 @default.
- W4328121284 cites W1991594766 @default.
- W4328121284 cites W2042105889 @default.
- W4328121284 cites W2062341668 @default.
- W4328121284 cites W2083183663 @default.
- W4328121284 cites W2087816846 @default.
- W4328121284 cites W2103608985 @default.
- W4328121284 cites W2111922336 @default.
- W4328121284 cites W2194775991 @default.
- W4328121284 cites W2256920829 @default.
- W4328121284 cites W2599231600 @default.
- W4328121284 cites W2790715811 @default.
- W4328121284 cites W2896011162 @default.
- W4328121284 cites W2902889243 @default.
- W4328121284 cites W2964199920 @default.
- W4328121284 cites W3025407686 @default.
- W4328121284 cites W3041442181 @default.
- W4328121284 cites W3084892460 @default.
- W4328121284 cites W3100397002 @default.
- W4328121284 cites W3108280663 @default.
- W4328121284 cites W3109790059 @default.
- W4328121284 cites W3111681251 @default.
- W4328121284 cites W3119586106 @default.
- W4328121284 cites W3135587035 @default.
- W4328121284 cites W3157173860 @default.
- W4328121284 cites W3176566042 @default.
- W4328121284 cites W3212670215 @default.
- W4328121284 cites W4285049539 @default.
- W4328121284 doi "https://doi.org/10.3390/ijgi12030132" @default.
- W4328121284 hasPublicationYear "2023" @default.
- W4328121284 type Work @default.
- W4328121284 citedByCount "0" @default.
- W4328121284 crossrefType "journal-article" @default.
- W4328121284 hasAuthorship W4328121284A5016140949 @default.
- W4328121284 hasAuthorship W4328121284A5027650848 @default.
- W4328121284 hasAuthorship W4328121284A5031845169 @default.
- W4328121284 hasAuthorship W4328121284A5049962512 @default.
- W4328121284 hasAuthorship W4328121284A5061305651 @default.
- W4328121284 hasAuthorship W4328121284A5070423020 @default.
- W4328121284 hasAuthorship W4328121284A5076122416 @default.
- W4328121284 hasAuthorship W4328121284A5082630089 @default.
- W4328121284 hasBestOaLocation W43281212841 @default.
- W4328121284 hasConcept C111919701 @default.
- W4328121284 hasConcept C11413529 @default.
- W4328121284 hasConcept C136886441 @default.
- W4328121284 hasConcept C144024400 @default.
- W4328121284 hasConcept C153180895 @default.
- W4328121284 hasConcept C154945302 @default.
- W4328121284 hasConcept C155512373 @default.
- W4328121284 hasConcept C160633673 @default.
- W4328121284 hasConcept C182124507 @default.
- W4328121284 hasConcept C19165224 @default.
- W4328121284 hasConcept C2778476105 @default.
- W4328121284 hasConcept C31972630 @default.
- W4328121284 hasConcept C41008148 @default.
- W4328121284 hasConcept C89600930 @default.
- W4328121284 hasConceptScore W4328121284C111919701 @default.
- W4328121284 hasConceptScore W4328121284C11413529 @default.
- W4328121284 hasConceptScore W4328121284C136886441 @default.
- W4328121284 hasConceptScore W4328121284C144024400 @default.
- W4328121284 hasConceptScore W4328121284C153180895 @default.
- W4328121284 hasConceptScore W4328121284C154945302 @default.
- W4328121284 hasConceptScore W4328121284C155512373 @default.
- W4328121284 hasConceptScore W4328121284C160633673 @default.
- W4328121284 hasConceptScore W4328121284C182124507 @default.
- W4328121284 hasConceptScore W4328121284C19165224 @default.
- W4328121284 hasConceptScore W4328121284C2778476105 @default.
- W4328121284 hasConceptScore W4328121284C31972630 @default.
- W4328121284 hasConceptScore W4328121284C41008148 @default.
- W4328121284 hasConceptScore W4328121284C89600930 @default.
- W4328121284 hasFunder F4320321001 @default.
- W4328121284 hasIssue "3" @default.
- W4328121284 hasLocation W43281212841 @default.
- W4328121284 hasOpenAccess W4328121284 @default.
- W4328121284 hasPrimaryLocation W43281212841 @default.
- W4328121284 hasRelatedWork W121273120 @default.
- W4328121284 hasRelatedWork W1669643531 @default.
- W4328121284 hasRelatedWork W2005437358 @default.
- W4328121284 hasRelatedWork W2008656436 @default.
- W4328121284 hasRelatedWork W2023558673 @default.
- W4328121284 hasRelatedWork W2134924024 @default.
- W4328121284 hasRelatedWork W2337415362 @default.
- W4328121284 hasRelatedWork W2517104666 @default.
- W4328121284 hasRelatedWork W2533072256 @default.
- W4328121284 hasRelatedWork W4312857205 @default.