Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328121509> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4328121509 endingPage "65" @default.
- W4328121509 startingPage "60" @default.
- W4328121509 abstract "Spatial interpolation is a required method to generate a continuous surface such as Digital Elevation Model (DEM) because field investigation for most of the surface’s part is time-consuming with a high demand in both human resources and monetory cost. One of the most used deterministic interpolation models is Inverse Distance Weighting (IDW) model. The model takes several neighbors’ information, and the weights are constructed based on the distance between the interpolated point and the neighbors’ points. From the machine learning model, Artificial Neural Networks (ANNs) model has also been used for spatial interpolation. The input of ANNs model is also one of the parameters that need to be defined when building the model. This paper evaluated the effect of the number of inputs (neighbors) on the elevation interpolation accuracy. We applied IDW and ANNs to interpolate the elevation of Balikpapan City, Indonesia. The results show that the accuracy increases significantly when the number of inputs is between one and three. However, after three inputs, additional input would not change the accuracy significantly. ANNs performed better than IDW. For three or more inputs, the MAE of ANNs and IDW interpolations are below 1.1 and around 2 meters, respectively." @default.
- W4328121509 created "2023-03-22" @default.
- W4328121509 creator A5029014588 @default.
- W4328121509 creator A5040215872 @default.
- W4328121509 date "2023-03-21" @default.
- W4328121509 modified "2023-09-26" @default.
- W4328121509 title "THE EFFECT OF THE NUMBER OF INPUTS ON THE SPATIAL INTERPOLATION OF ELEVATION DATA USING IDW AND ANNS" @default.
- W4328121509 cites W1922448215 @default.
- W4328121509 cites W1965997021 @default.
- W4328121509 cites W2017661312 @default.
- W4328121509 cites W2042179281 @default.
- W4328121509 cites W2078174363 @default.
- W4328121509 cites W2081847341 @default.
- W4328121509 cites W2099596680 @default.
- W4328121509 cites W2147169375 @default.
- W4328121509 cites W2155300412 @default.
- W4328121509 cites W2627650999 @default.
- W4328121509 cites W2742739113 @default.
- W4328121509 cites W2937855218 @default.
- W4328121509 cites W2985500708 @default.
- W4328121509 cites W3196188632 @default.
- W4328121509 cites W4250929171 @default.
- W4328121509 cites W433265185 @default.
- W4328121509 doi "https://doi.org/10.3846/gac.2023.16591" @default.
- W4328121509 hasPublicationYear "2023" @default.
- W4328121509 type Work @default.
- W4328121509 citedByCount "0" @default.
- W4328121509 crossrefType "journal-article" @default.
- W4328121509 hasAuthorship W4328121509A5029014588 @default.
- W4328121509 hasAuthorship W4328121509A5040215872 @default.
- W4328121509 hasBestOaLocation W43281215091 @default.
- W4328121509 hasConcept C11413529 @default.
- W4328121509 hasConcept C115961682 @default.
- W4328121509 hasConcept C126838900 @default.
- W4328121509 hasConcept C137800194 @default.
- W4328121509 hasConcept C154945302 @default.
- W4328121509 hasConcept C181843262 @default.
- W4328121509 hasConcept C183115368 @default.
- W4328121509 hasConcept C203332170 @default.
- W4328121509 hasConcept C205203396 @default.
- W4328121509 hasConcept C205649164 @default.
- W4328121509 hasConcept C207467116 @default.
- W4328121509 hasConcept C2524010 @default.
- W4328121509 hasConcept C28719098 @default.
- W4328121509 hasConcept C31972630 @default.
- W4328121509 hasConcept C33923547 @default.
- W4328121509 hasConcept C37054046 @default.
- W4328121509 hasConcept C41008148 @default.
- W4328121509 hasConcept C47872207 @default.
- W4328121509 hasConcept C50644808 @default.
- W4328121509 hasConcept C62649853 @default.
- W4328121509 hasConcept C71924100 @default.
- W4328121509 hasConceptScore W4328121509C11413529 @default.
- W4328121509 hasConceptScore W4328121509C115961682 @default.
- W4328121509 hasConceptScore W4328121509C126838900 @default.
- W4328121509 hasConceptScore W4328121509C137800194 @default.
- W4328121509 hasConceptScore W4328121509C154945302 @default.
- W4328121509 hasConceptScore W4328121509C181843262 @default.
- W4328121509 hasConceptScore W4328121509C183115368 @default.
- W4328121509 hasConceptScore W4328121509C203332170 @default.
- W4328121509 hasConceptScore W4328121509C205203396 @default.
- W4328121509 hasConceptScore W4328121509C205649164 @default.
- W4328121509 hasConceptScore W4328121509C207467116 @default.
- W4328121509 hasConceptScore W4328121509C2524010 @default.
- W4328121509 hasConceptScore W4328121509C28719098 @default.
- W4328121509 hasConceptScore W4328121509C31972630 @default.
- W4328121509 hasConceptScore W4328121509C33923547 @default.
- W4328121509 hasConceptScore W4328121509C37054046 @default.
- W4328121509 hasConceptScore W4328121509C41008148 @default.
- W4328121509 hasConceptScore W4328121509C47872207 @default.
- W4328121509 hasConceptScore W4328121509C50644808 @default.
- W4328121509 hasConceptScore W4328121509C62649853 @default.
- W4328121509 hasConceptScore W4328121509C71924100 @default.
- W4328121509 hasIssue "1" @default.
- W4328121509 hasLocation W43281215091 @default.
- W4328121509 hasOpenAccess W4328121509 @default.
- W4328121509 hasPrimaryLocation W43281215091 @default.
- W4328121509 hasRelatedWork W168467865 @default.
- W4328121509 hasRelatedWork W2047835563 @default.
- W4328121509 hasRelatedWork W2106521739 @default.
- W4328121509 hasRelatedWork W2785584190 @default.
- W4328121509 hasRelatedWork W2974706584 @default.
- W4328121509 hasRelatedWork W3084099706 @default.
- W4328121509 hasRelatedWork W3121190060 @default.
- W4328121509 hasRelatedWork W4249742353 @default.
- W4328121509 hasRelatedWork W4328121509 @default.
- W4328121509 hasRelatedWork W843171945 @default.
- W4328121509 hasVolume "49" @default.
- W4328121509 isParatext "false" @default.
- W4328121509 isRetracted "false" @default.
- W4328121509 workType "article" @default.