Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328122272> ?p ?o ?g. }
- W4328122272 endingPage "287" @default.
- W4328122272 startingPage "287" @default.
- W4328122272 abstract "Mental health issues can have significant impacts on individuals and communities and hence on social sustainability. There are several challenges facing mental health treatment; however, more important is to remove the root causes of mental illnesses because doing so can help prevent mental health problems from occurring or recurring. This requires a holistic approach to understanding mental health issues that are missing from the existing research. Mental health should be understood in the context of social and environmental factors. More research and awareness are needed, as well as interventions to address root causes. The effectiveness and risks of medications should also be studied. This paper proposes a big data and machine learning-based approach for the automatic discovery of parameters related to mental health from Twitter data. The parameters are discovered from three different perspectives: Drugs and Treatments, Causes and Effects, and Drug Abuse. We used Twitter to gather 1,048,575 tweets in Arabic about psychological health in Saudi Arabia. We built a big data machine learning software tool for this work. A total of 52 parameters were discovered for all three perspectives. We defined six macro-parameters (Diseases and Disorders, Individual Factors, Social and Economic Factors, Treatment Options, Treatment Limitations, and Drug Abuse) to aggregate related parameters. We provide a comprehensive account of mental health, causes, medicines and treatments, mental health and drug effects, and drug abuse, as seen on Twitter, discussed by the public and health professionals. Moreover, we identify their associations with different drugs. The work will open new directions for a social media-based identification of drug use and abuse for mental health, as well as other micro and macro factors related to mental health. The methodology can be extended to other diseases and provides a potential for discovering evidence for forensics toxicology from social and digital media." @default.
- W4328122272 created "2023-03-22" @default.
- W4328122272 creator A5022780651 @default.
- W4328122272 creator A5070001954 @default.
- W4328122272 creator A5077619272 @default.
- W4328122272 creator A5088379188 @default.
- W4328122272 date "2023-03-20" @default.
- W4328122272 modified "2023-10-01" @default.
- W4328122272 title "Psychological Health and Drugs: Data-Driven Discovery of Causes, Treatments, Effects, and Abuses" @default.
- W4328122272 cites W1970021328 @default.
- W4328122272 cites W1986926210 @default.
- W4328122272 cites W1997598762 @default.
- W4328122272 cites W2019759670 @default.
- W4328122272 cites W2088955598 @default.
- W4328122272 cites W2123058458 @default.
- W4328122272 cites W2160170318 @default.
- W4328122272 cites W2161339188 @default.
- W4328122272 cites W2169523918 @default.
- W4328122272 cites W2394560926 @default.
- W4328122272 cites W2500476377 @default.
- W4328122272 cites W2513127974 @default.
- W4328122272 cites W2727825728 @default.
- W4328122272 cites W2742522830 @default.
- W4328122272 cites W2763542286 @default.
- W4328122272 cites W2770546324 @default.
- W4328122272 cites W2794183891 @default.
- W4328122272 cites W2802222542 @default.
- W4328122272 cites W2809713224 @default.
- W4328122272 cites W2889097229 @default.
- W4328122272 cites W2901954342 @default.
- W4328122272 cites W2911295176 @default.
- W4328122272 cites W2959923541 @default.
- W4328122272 cites W2960722855 @default.
- W4328122272 cites W2965255255 @default.
- W4328122272 cites W2967916005 @default.
- W4328122272 cites W2971456025 @default.
- W4328122272 cites W2973210190 @default.
- W4328122272 cites W2991874591 @default.
- W4328122272 cites W3000918316 @default.
- W4328122272 cites W3021560368 @default.
- W4328122272 cites W3033293557 @default.
- W4328122272 cites W3039647217 @default.
- W4328122272 cites W3047008268 @default.
- W4328122272 cites W306609242 @default.
- W4328122272 cites W3082099673 @default.
- W4328122272 cites W3092012360 @default.
- W4328122272 cites W3095904114 @default.
- W4328122272 cites W3113280176 @default.
- W4328122272 cites W3114191622 @default.
- W4328122272 cites W3114213707 @default.
- W4328122272 cites W3117955110 @default.
- W4328122272 cites W3118613563 @default.
- W4328122272 cites W3138786124 @default.
- W4328122272 cites W3159427678 @default.
- W4328122272 cites W3179014406 @default.
- W4328122272 cites W3180117644 @default.
- W4328122272 cites W3187341546 @default.
- W4328122272 cites W3203080603 @default.
- W4328122272 cites W3204320660 @default.
- W4328122272 cites W4220654969 @default.
- W4328122272 cites W4220998616 @default.
- W4328122272 cites W4233060622 @default.
- W4328122272 cites W4245713986 @default.
- W4328122272 cites W4253643104 @default.
- W4328122272 cites W4280501959 @default.
- W4328122272 cites W4281708978 @default.
- W4328122272 cites W4283662487 @default.
- W4328122272 cites W4283802000 @default.
- W4328122272 cites W4285795614 @default.
- W4328122272 cites W4288069947 @default.
- W4328122272 cites W4291636514 @default.
- W4328122272 cites W4298396637 @default.
- W4328122272 cites W4307623841 @default.
- W4328122272 cites W4317932721 @default.
- W4328122272 cites W4319262983 @default.
- W4328122272 cites W4328122272 @default.
- W4328122272 doi "https://doi.org/10.3390/toxics11030287" @default.
- W4328122272 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36977052" @default.
- W4328122272 hasPublicationYear "2023" @default.
- W4328122272 type Work @default.
- W4328122272 citedByCount "1" @default.
- W4328122272 countsByYear W43281222722023 @default.
- W4328122272 crossrefType "journal-article" @default.
- W4328122272 hasAuthorship W4328122272A5022780651 @default.
- W4328122272 hasAuthorship W4328122272A5070001954 @default.
- W4328122272 hasAuthorship W4328122272A5077619272 @default.
- W4328122272 hasAuthorship W4328122272A5088379188 @default.
- W4328122272 hasBestOaLocation W43281222721 @default.
- W4328122272 hasConcept C118552586 @default.
- W4328122272 hasConcept C124101348 @default.
- W4328122272 hasConcept C134362201 @default.
- W4328122272 hasConcept C136764020 @default.
- W4328122272 hasConcept C138816342 @default.
- W4328122272 hasConcept C151730666 @default.
- W4328122272 hasConcept C15744967 @default.
- W4328122272 hasConcept C159110408 @default.
- W4328122272 hasConcept C2522767166 @default.
- W4328122272 hasConcept C27415008 @default.