Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328123498> ?p ?o ?g. }
- W4328123498 endingPage "987" @default.
- W4328123498 startingPage "975" @default.
- W4328123498 abstract "Abstract Accurate preharvest yield estimation is an important issue for agricultural planning purposes and precision farming. Machine learning (ML) based on readily obtained information on the cropping system, typically including spectral reflectance measurements, is an essential approach for achieving practical solutions. We tested in a 9‐year soil compaction experiment the accuracy of ML‐based yield predictions made up to 2 months before harvest from a Ratio Vegetation Index (RVI) and recordings of precipitation and reference evapotranspiration. The applied data set comprises 224 combinations of plots and years with measured grain yields in the range of 4.22–9.34 Mg/ha. The best ML model [i.e., with the smallest mean absolute error (MAE)] was selected automatically by the AutoML interface included in the R program package H 2 O. Its cross‐validated predictions made on June 30 more than 1 month before harvest showed an MAE of 0.38 Mg/ha when trained on all data from all years except the one under consideration. MAE increased to about 0.68 Mg/ha when determined 3 weeks earlier on June 10. MAE values in the range of 0.32–0.42 Mg/ha were obtained for predictions made on June 30 when based on data from at least six consecutive years; however, MAE showed no generally decreasing trend with the number of years. Yield estimations were robust towards a considerable soil variation observed within the experimental area due in part to the experimental treatments. The results show a potential of making yield predictions in barley 1–2 months before harvest, which, however, is not sufficiently early to support decisions on top‐dress N fertilization." @default.
- W4328123498 created "2023-03-22" @default.
- W4328123498 creator A5052142333 @default.
- W4328123498 creator A5078919226 @default.
- W4328123498 creator A5090647856 @default.
- W4328123498 date "2023-03-28" @default.
- W4328123498 modified "2023-09-27" @default.
- W4328123498 title "Yield prediction in spring barley from spectral reflectance and weather data using machine learning" @default.
- W4328123498 cites W1965542342 @default.
- W4328123498 cites W1971798222 @default.
- W4328123498 cites W1979583486 @default.
- W4328123498 cites W1992245241 @default.
- W4328123498 cites W1994924149 @default.
- W4328123498 cites W2036706101 @default.
- W4328123498 cites W2076240252 @default.
- W4328123498 cites W2076359237 @default.
- W4328123498 cites W2084341220 @default.
- W4328123498 cites W2085104288 @default.
- W4328123498 cites W2102055432 @default.
- W4328123498 cites W2131046028 @default.
- W4328123498 cites W2138632244 @default.
- W4328123498 cites W2200121095 @default.
- W4328123498 cites W2250636764 @default.
- W4328123498 cites W2492202575 @default.
- W4328123498 cites W2546584936 @default.
- W4328123498 cites W2742556652 @default.
- W4328123498 cites W2805142011 @default.
- W4328123498 cites W2885770726 @default.
- W4328123498 cites W2944794516 @default.
- W4328123498 cites W2963935416 @default.
- W4328123498 cites W2983376237 @default.
- W4328123498 cites W3006347555 @default.
- W4328123498 cites W3079760979 @default.
- W4328123498 cites W3171454075 @default.
- W4328123498 cites W4249071851 @default.
- W4328123498 doi "https://doi.org/10.1111/sum.12902" @default.
- W4328123498 hasPublicationYear "2023" @default.
- W4328123498 type Work @default.
- W4328123498 citedByCount "1" @default.
- W4328123498 countsByYear W43281234982023 @default.
- W4328123498 crossrefType "journal-article" @default.
- W4328123498 hasAuthorship W4328123498A5052142333 @default.
- W4328123498 hasAuthorship W4328123498A5078919226 @default.
- W4328123498 hasAuthorship W4328123498A5090647856 @default.
- W4328123498 hasBestOaLocation W43281234981 @default.
- W4328123498 hasConcept C105795698 @default.
- W4328123498 hasConcept C108597893 @default.
- W4328123498 hasConcept C118518473 @default.
- W4328123498 hasConcept C120217122 @default.
- W4328123498 hasConcept C120665830 @default.
- W4328123498 hasConcept C121332964 @default.
- W4328123498 hasConcept C134121241 @default.
- W4328123498 hasConcept C13558536 @default.
- W4328123498 hasConcept C144027150 @default.
- W4328123498 hasConcept C1549246 @default.
- W4328123498 hasConcept C157670687 @default.
- W4328123498 hasConcept C159985019 @default.
- W4328123498 hasConcept C166957645 @default.
- W4328123498 hasConcept C176783924 @default.
- W4328123498 hasConcept C18903297 @default.
- W4328123498 hasConcept C191897082 @default.
- W4328123498 hasConcept C192562407 @default.
- W4328123498 hasConcept C204323151 @default.
- W4328123498 hasConcept C205649164 @default.
- W4328123498 hasConcept C25989453 @default.
- W4328123498 hasConcept C2778119613 @default.
- W4328123498 hasConcept C33923547 @default.
- W4328123498 hasConcept C39432304 @default.
- W4328123498 hasConcept C6557445 @default.
- W4328123498 hasConcept C86803240 @default.
- W4328123498 hasConceptScore W4328123498C105795698 @default.
- W4328123498 hasConceptScore W4328123498C108597893 @default.
- W4328123498 hasConceptScore W4328123498C118518473 @default.
- W4328123498 hasConceptScore W4328123498C120217122 @default.
- W4328123498 hasConceptScore W4328123498C120665830 @default.
- W4328123498 hasConceptScore W4328123498C121332964 @default.
- W4328123498 hasConceptScore W4328123498C134121241 @default.
- W4328123498 hasConceptScore W4328123498C13558536 @default.
- W4328123498 hasConceptScore W4328123498C144027150 @default.
- W4328123498 hasConceptScore W4328123498C1549246 @default.
- W4328123498 hasConceptScore W4328123498C157670687 @default.
- W4328123498 hasConceptScore W4328123498C159985019 @default.
- W4328123498 hasConceptScore W4328123498C166957645 @default.
- W4328123498 hasConceptScore W4328123498C176783924 @default.
- W4328123498 hasConceptScore W4328123498C18903297 @default.
- W4328123498 hasConceptScore W4328123498C191897082 @default.
- W4328123498 hasConceptScore W4328123498C192562407 @default.
- W4328123498 hasConceptScore W4328123498C204323151 @default.
- W4328123498 hasConceptScore W4328123498C205649164 @default.
- W4328123498 hasConceptScore W4328123498C25989453 @default.
- W4328123498 hasConceptScore W4328123498C2778119613 @default.
- W4328123498 hasConceptScore W4328123498C33923547 @default.
- W4328123498 hasConceptScore W4328123498C39432304 @default.
- W4328123498 hasConceptScore W4328123498C6557445 @default.
- W4328123498 hasConceptScore W4328123498C86803240 @default.
- W4328123498 hasFunder F4320336700 @default.
- W4328123498 hasIssue "2" @default.
- W4328123498 hasLocation W43281234981 @default.