Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328124425> ?p ?o ?g. }
- W4328124425 abstract "This research compares the use of the SAR (Sentinel-1) and Optical (Sentinel-2) sensors in identifying and mapping burnt and unburnt scars are rising during a bushfire in southeastern Australia and Margalla Hills, Islamabad, Pakistan, in 2019 and 2020. In order to evaluate the backscatter strength along with the Polarimetric decomposition portion, the C-band dual-polarized Sentinel-1 data was investigated to determine the magnitude of the burnt areas of forest cover in the study area. We could derive texture measurements from locally-based statistics using the Grey Level Co-occurrence Matrix (GLCM) and the backscatter coefficient. This was because of how well it picked up on differences in texture between burned and unburned scars. In contrast, Sentinel-2 optical remote sensing was employed to evaluate the extent of the burnt intensity levels for both regions utilizing the differential Normalized Burnt Ratio (dNBR). A Support Vector Machine (SVM) and Markov Random Field (MRF) classifier were utilized to investigate the study’s context. The ideal smoothing parameter is the result of incorporating the image’s spectral characteristics and spatial meaning. Sentinel-2 images were used as a foundation for both the test and training datasets, which were built from images of both unburned and burned areas broken down pixel by pixel. In both types, including spectral sensitivity and sensitivity of Polarimetric for the two groups identified after classification, the experimental findings showed a clear association between them. The algorithm’s efficiency was evaluated using the kappa coefficient and F-score calculation. Except for Sentinel-1 data in Pakistan, all fire areas have more than 0.80 accuracies. The highest precision of both Sentinel-1 and Sentinel-2 was also provided by the performance of users’ and producers’ accuracy. The entropy alpha decomposition helped define the target given by the H-a plane based on its physical properties. After the burn, the entropy and alpha values diminished and formed a pattern. However, the findings in this field validate the effectiveness of SAR sensors data and optical satellite in forest applications. The related sensitivity is highly dependent on the composition of the landscape, the geographical nature of the study area, and the severity of the burn." @default.
- W4328124425 created "2023-03-22" @default.
- W4328124425 creator A5049417604 @default.
- W4328124425 creator A5056415424 @default.
- W4328124425 creator A5065137123 @default.
- W4328124425 creator A5065631600 @default.
- W4328124425 creator A5070167217 @default.
- W4328124425 creator A5070296537 @default.
- W4328124425 creator A5072120993 @default.
- W4328124425 date "2023-03-21" @default.
- W4328124425 modified "2023-10-10" @default.
- W4328124425 title "Integrated use of Sentinel-1 and Sentinel-2 data and open-source machine learning algorithms for burnt and unburnt scars" @default.
- W4328124425 cites W1530699444 @default.
- W4328124425 cites W1972740446 @default.
- W4328124425 cites W1980979142 @default.
- W4328124425 cites W1983242495 @default.
- W4328124425 cites W1986942231 @default.
- W4328124425 cites W1994724819 @default.
- W4328124425 cites W1998733631 @default.
- W4328124425 cites W2008010045 @default.
- W4328124425 cites W2008082679 @default.
- W4328124425 cites W2011409266 @default.
- W4328124425 cites W2034516548 @default.
- W4328124425 cites W2039955993 @default.
- W4328124425 cites W2051874926 @default.
- W4328124425 cites W2056148677 @default.
- W4328124425 cites W2059483494 @default.
- W4328124425 cites W2076007875 @default.
- W4328124425 cites W2076656703 @default.
- W4328124425 cites W2078985447 @default.
- W4328124425 cites W2082475868 @default.
- W4328124425 cites W2086014296 @default.
- W4328124425 cites W2099964454 @default.
- W4328124425 cites W2100523380 @default.
- W4328124425 cites W2106322924 @default.
- W4328124425 cites W2107966405 @default.
- W4328124425 cites W2109943158 @default.
- W4328124425 cites W2111862199 @default.
- W4328124425 cites W2114358147 @default.
- W4328124425 cites W2133989913 @default.
- W4328124425 cites W2138137411 @default.
- W4328124425 cites W2140804683 @default.
- W4328124425 cites W2143423912 @default.
- W4328124425 cites W2200518663 @default.
- W4328124425 cites W2332981326 @default.
- W4328124425 cites W2426691821 @default.
- W4328124425 cites W2508764147 @default.
- W4328124425 cites W2556694165 @default.
- W4328124425 cites W2742012967 @default.
- W4328124425 cites W2767841646 @default.
- W4328124425 cites W2870117091 @default.
- W4328124425 cites W2895854890 @default.
- W4328124425 cites W2998209783 @default.
- W4328124425 cites W3009000090 @default.
- W4328124425 cites W3093701503 @default.
- W4328124425 cites W3158048883 @default.
- W4328124425 cites W3163551536 @default.
- W4328124425 cites W3177490208 @default.
- W4328124425 cites W3198258155 @default.
- W4328124425 cites W3206143568 @default.
- W4328124425 cites W4225281629 @default.
- W4328124425 cites W4225292946 @default.
- W4328124425 cites W4282976009 @default.
- W4328124425 cites W4285289054 @default.
- W4328124425 cites W4290601512 @default.
- W4328124425 cites W4298141321 @default.
- W4328124425 cites W4302307637 @default.
- W4328124425 cites W4303614037 @default.
- W4328124425 cites W4307898230 @default.
- W4328124425 doi "https://doi.org/10.1080/19475705.2023.2190856" @default.
- W4328124425 hasPublicationYear "2023" @default.
- W4328124425 type Work @default.
- W4328124425 citedByCount "5" @default.
- W4328124425 countsByYear W43281244252023 @default.
- W4328124425 crossrefType "journal-article" @default.
- W4328124425 hasAuthorship W4328124425A5049417604 @default.
- W4328124425 hasAuthorship W4328124425A5056415424 @default.
- W4328124425 hasAuthorship W4328124425A5065137123 @default.
- W4328124425 hasAuthorship W4328124425A5065631600 @default.
- W4328124425 hasAuthorship W4328124425A5070167217 @default.
- W4328124425 hasAuthorship W4328124425A5070296537 @default.
- W4328124425 hasAuthorship W4328124425A5072120993 @default.
- W4328124425 hasBestOaLocation W43281244251 @default.
- W4328124425 hasConcept C11413529 @default.
- W4328124425 hasConcept C119857082 @default.
- W4328124425 hasConcept C12267149 @default.
- W4328124425 hasConcept C127313418 @default.
- W4328124425 hasConcept C154945302 @default.
- W4328124425 hasConcept C160633673 @default.
- W4328124425 hasConcept C163864269 @default.
- W4328124425 hasConcept C169258074 @default.
- W4328124425 hasConcept C31972630 @default.
- W4328124425 hasConcept C33923547 @default.
- W4328124425 hasConcept C3770464 @default.
- W4328124425 hasConcept C41008148 @default.
- W4328124425 hasConcept C62649853 @default.
- W4328124425 hasConceptScore W4328124425C11413529 @default.
- W4328124425 hasConceptScore W4328124425C119857082 @default.
- W4328124425 hasConceptScore W4328124425C12267149 @default.
- W4328124425 hasConceptScore W4328124425C127313418 @default.