Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328125633> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4328125633 endingPage "1686" @default.
- W4328125633 startingPage "1686" @default.
- W4328125633 abstract "Nowadays, millions of photovoltaic (PV) plants are installed around the world. Given the widespread use of PV supply systems and in order to keep these PV plants safe and to avoid power losses, they should be carefully protected, and eventual faults should be detected, classified and isolated. In this paper, different machine learning (ML) and deep learning (DL) techniques were assessed for fault detection and diagnosis of PV modules. First, a dataset of infrared thermography images of normal and failure PV modules was collected. Second, two sub-datasets were built from the original one: The first sub-dataset contained normal and faulty IRT images, while the second one comprised only faulty IRT images. The first sub-dataset was used to develop fault detection models referred to as binary classification, for which an image was classified as representing a faulty PV panel or a normal one. The second one was used to design fault diagnosis models, referred to as multi-classification, where four classes (Fault1, Fault2, Fault3 and Fault4) were examined. The investigated faults were, respectively, failure bypass diode, shading effect, short-circuited PV module and soil accumulated on the PV module. To evaluate the efficiency of the investigated models, convolution matrix including precision, recall, F1-score and accuracy were used. The results showed that the methods based on deep learning exhibited better accuracy for both binary and multiclass classification while solving the fault detection and diagnosis problem in PV modules/arrays. In fact, deep learning techniques were found to be efficient for the detection and classification of different kinds of defects with good accuracy (98.71%). Through a comparative study, it was confirmed that the DL-based approaches have outperformed those based on ML-based algorithms." @default.
- W4328125633 created "2023-03-22" @default.
- W4328125633 creator A5005859792 @default.
- W4328125633 creator A5015505088 @default.
- W4328125633 creator A5051512385 @default.
- W4328125633 creator A5058962178 @default.
- W4328125633 date "2023-03-21" @default.
- W4328125633 modified "2023-10-15" @default.
- W4328125633 title "Assessment of Machine and Deep Learning Approaches for Fault Diagnosis in Photovoltaic Systems Using Infrared Thermography" @default.
- W4328125633 cites W2015570745 @default.
- W4328125633 cites W2090922444 @default.
- W4328125633 cites W2171549478 @default.
- W4328125633 cites W2796210775 @default.
- W4328125633 cites W2807678590 @default.
- W4328125633 cites W2895777600 @default.
- W4328125633 cites W2920827296 @default.
- W4328125633 cites W2945823963 @default.
- W4328125633 cites W2988812296 @default.
- W4328125633 cites W3003936655 @default.
- W4328125633 cites W3012393889 @default.
- W4328125633 cites W3112490813 @default.
- W4328125633 cites W3119818737 @default.
- W4328125633 cites W3134391797 @default.
- W4328125633 cites W3194193562 @default.
- W4328125633 cites W4205977638 @default.
- W4328125633 cites W4210369395 @default.
- W4328125633 cites W4210984451 @default.
- W4328125633 cites W4226418291 @default.
- W4328125633 cites W4289731763 @default.
- W4328125633 cites W4293068393 @default.
- W4328125633 cites W4294834075 @default.
- W4328125633 cites W4302425360 @default.
- W4328125633 cites W4307449372 @default.
- W4328125633 doi "https://doi.org/10.3390/rs15061686" @default.
- W4328125633 hasPublicationYear "2023" @default.
- W4328125633 type Work @default.
- W4328125633 citedByCount "0" @default.
- W4328125633 crossrefType "journal-article" @default.
- W4328125633 hasAuthorship W4328125633A5005859792 @default.
- W4328125633 hasAuthorship W4328125633A5015505088 @default.
- W4328125633 hasAuthorship W4328125633A5051512385 @default.
- W4328125633 hasAuthorship W4328125633A5058962178 @default.
- W4328125633 hasBestOaLocation W43281256331 @default.
- W4328125633 hasConcept C108583219 @default.
- W4328125633 hasConcept C119599485 @default.
- W4328125633 hasConcept C119857082 @default.
- W4328125633 hasConcept C120665830 @default.
- W4328125633 hasConcept C121332964 @default.
- W4328125633 hasConcept C127313418 @default.
- W4328125633 hasConcept C127413603 @default.
- W4328125633 hasConcept C152745839 @default.
- W4328125633 hasConcept C153180895 @default.
- W4328125633 hasConcept C154945302 @default.
- W4328125633 hasConcept C158355884 @default.
- W4328125633 hasConcept C165205528 @default.
- W4328125633 hasConcept C172707124 @default.
- W4328125633 hasConcept C175551986 @default.
- W4328125633 hasConcept C200601418 @default.
- W4328125633 hasConcept C2779222261 @default.
- W4328125633 hasConcept C41008148 @default.
- W4328125633 hasConcept C41291067 @default.
- W4328125633 hasConceptScore W4328125633C108583219 @default.
- W4328125633 hasConceptScore W4328125633C119599485 @default.
- W4328125633 hasConceptScore W4328125633C119857082 @default.
- W4328125633 hasConceptScore W4328125633C120665830 @default.
- W4328125633 hasConceptScore W4328125633C121332964 @default.
- W4328125633 hasConceptScore W4328125633C127313418 @default.
- W4328125633 hasConceptScore W4328125633C127413603 @default.
- W4328125633 hasConceptScore W4328125633C152745839 @default.
- W4328125633 hasConceptScore W4328125633C153180895 @default.
- W4328125633 hasConceptScore W4328125633C154945302 @default.
- W4328125633 hasConceptScore W4328125633C158355884 @default.
- W4328125633 hasConceptScore W4328125633C165205528 @default.
- W4328125633 hasConceptScore W4328125633C172707124 @default.
- W4328125633 hasConceptScore W4328125633C175551986 @default.
- W4328125633 hasConceptScore W4328125633C200601418 @default.
- W4328125633 hasConceptScore W4328125633C2779222261 @default.
- W4328125633 hasConceptScore W4328125633C41008148 @default.
- W4328125633 hasConceptScore W4328125633C41291067 @default.
- W4328125633 hasIssue "6" @default.
- W4328125633 hasLocation W43281256331 @default.
- W4328125633 hasOpenAccess W4328125633 @default.
- W4328125633 hasPrimaryLocation W43281256331 @default.
- W4328125633 hasRelatedWork W2795261237 @default.
- W4328125633 hasRelatedWork W3014300295 @default.
- W4328125633 hasRelatedWork W3164822677 @default.
- W4328125633 hasRelatedWork W4223943233 @default.
- W4328125633 hasRelatedWork W4225161397 @default.
- W4328125633 hasRelatedWork W4312200629 @default.
- W4328125633 hasRelatedWork W4360585206 @default.
- W4328125633 hasRelatedWork W4364306694 @default.
- W4328125633 hasRelatedWork W4380075502 @default.
- W4328125633 hasRelatedWork W4380086463 @default.
- W4328125633 hasVolume "15" @default.
- W4328125633 isParatext "false" @default.
- W4328125633 isRetracted "false" @default.
- W4328125633 workType "article" @default.