Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328126951> ?p ?o ?g. }
- W4328126951 abstract "Abstract Assignment of resonances of nuclear magnetic resonance (NMR) spectra to specific atoms within a protein remains a labor-intensive and challenging task. Automation of the assignment process often remains a bottleneck in the exploitation of solution NMR spectroscopy for the study of protein structure-dynamics-function relationships. We present an approach to the assignment of backbone triple resonance spectra of proteins. A Bayesian statistical analysis of predicted and observed chemical shifts is used in conjunction with inter-spin connectivities provided by triple resonance spectroscopy to calculate a pseudo-energy potential that drives a simulated annealing search for the most optimal set of resonance assignments. Termed Bayesian Assisted Assignments by Simulated Annealing (BARASA), a C++ program implementation is tested against systems ranging in size to over 450 amino acids including examples of intrinsically disordered proteins. BARASA is fast, robust, accommodates incomplete and incorrect information, and outperforms current algorithms – especially in cases of sparse data and is sufficiently fast to allow for real-time evaluation during data acquisition." @default.
- W4328126951 created "2023-03-22" @default.
- W4328126951 creator A5014664998 @default.
- W4328126951 creator A5016059872 @default.
- W4328126951 creator A5059933277 @default.
- W4328126951 creator A5062837298 @default.
- W4328126951 creator A5081320421 @default.
- W4328126951 date "2023-03-21" @default.
- W4328126951 modified "2023-10-14" @default.
- W4328126951 title "Robust automated backbone triple resonance NMR assignments of proteins using Bayesian-based simulated annealing" @default.
- W4328126951 cites W1520812788 @default.
- W4328126951 cites W1540949483 @default.
- W4328126951 cites W1583976079 @default.
- W4328126951 cites W1972992778 @default.
- W4328126951 cites W1974615239 @default.
- W4328126951 cites W1974718377 @default.
- W4328126951 cites W1990329135 @default.
- W4328126951 cites W1994057597 @default.
- W4328126951 cites W2004354100 @default.
- W4328126951 cites W2011925701 @default.
- W4328126951 cites W2016365026 @default.
- W4328126951 cites W2016706363 @default.
- W4328126951 cites W2019493296 @default.
- W4328126951 cites W2020739624 @default.
- W4328126951 cites W2022496873 @default.
- W4328126951 cites W2024060531 @default.
- W4328126951 cites W2027760729 @default.
- W4328126951 cites W2029120587 @default.
- W4328126951 cites W2034369677 @default.
- W4328126951 cites W2040566077 @default.
- W4328126951 cites W2046282779 @default.
- W4328126951 cites W2053202752 @default.
- W4328126951 cites W2056760934 @default.
- W4328126951 cites W2073486807 @default.
- W4328126951 cites W2087774804 @default.
- W4328126951 cites W2093728891 @default.
- W4328126951 cites W2096724056 @default.
- W4328126951 cites W2100736103 @default.
- W4328126951 cites W2106445386 @default.
- W4328126951 cites W2124047990 @default.
- W4328126951 cites W2130479394 @default.
- W4328126951 cites W2136332525 @default.
- W4328126951 cites W2147281292 @default.
- W4328126951 cites W2158105833 @default.
- W4328126951 cites W2169462961 @default.
- W4328126951 cites W2169821755 @default.
- W4328126951 cites W2181409396 @default.
- W4328126951 cites W2202190112 @default.
- W4328126951 cites W2316378209 @default.
- W4328126951 cites W2329618939 @default.
- W4328126951 cites W2608193358 @default.
- W4328126951 cites W2735746061 @default.
- W4328126951 cites W2745485278 @default.
- W4328126951 cites W2766011702 @default.
- W4328126951 cites W2899596245 @default.
- W4328126951 cites W2948073409 @default.
- W4328126951 cites W2982428589 @default.
- W4328126951 cites W3044925703 @default.
- W4328126951 cites W3124250684 @default.
- W4328126951 cites W3128777856 @default.
- W4328126951 cites W3177828909 @default.
- W4328126951 cites W336159165 @default.
- W4328126951 cites W4224214254 @default.
- W4328126951 cites W4229743141 @default.
- W4328126951 cites W4285493523 @default.
- W4328126951 doi "https://doi.org/10.1038/s41467-023-37219-z" @default.
- W4328126951 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36944645" @default.
- W4328126951 hasPublicationYear "2023" @default.
- W4328126951 type Work @default.
- W4328126951 citedByCount "1" @default.
- W4328126951 crossrefType "journal-article" @default.
- W4328126951 hasAuthorship W4328126951A5014664998 @default.
- W4328126951 hasAuthorship W4328126951A5016059872 @default.
- W4328126951 hasAuthorship W4328126951A5059933277 @default.
- W4328126951 hasAuthorship W4328126951A5062837298 @default.
- W4328126951 hasAuthorship W4328126951A5081320421 @default.
- W4328126951 hasBestOaLocation W43281269511 @default.
- W4328126951 hasConcept C107673813 @default.
- W4328126951 hasConcept C11413529 @default.
- W4328126951 hasConcept C121332964 @default.
- W4328126951 hasConcept C126980161 @default.
- W4328126951 hasConcept C1276947 @default.
- W4328126951 hasConcept C139210041 @default.
- W4328126951 hasConcept C149635348 @default.
- W4328126951 hasConcept C154945302 @default.
- W4328126951 hasConcept C184779094 @default.
- W4328126951 hasConcept C185592680 @default.
- W4328126951 hasConcept C186060115 @default.
- W4328126951 hasConcept C2780513914 @default.
- W4328126951 hasConcept C32891209 @default.
- W4328126951 hasConcept C41008148 @default.
- W4328126951 hasConcept C46141821 @default.
- W4328126951 hasConcept C4839761 @default.
- W4328126951 hasConcept C62520636 @default.
- W4328126951 hasConcept C66974803 @default.
- W4328126951 hasConcept C86803240 @default.
- W4328126951 hasConceptScore W4328126951C107673813 @default.
- W4328126951 hasConceptScore W4328126951C11413529 @default.
- W4328126951 hasConceptScore W4328126951C121332964 @default.
- W4328126951 hasConceptScore W4328126951C126980161 @default.