Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328127101> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4328127101 endingPage "5517" @default.
- W4328127101 startingPage "5517" @default.
- W4328127101 abstract "There is always a desire for defect-free software in order to maintain software quality for customer satisfaction and to save testing expenses. As a result, we examined various known ML techniques and optimized ML techniques on a freely available data set. The purpose of the research was to improve the model performance in terms of accuracy and precision of the dataset compared to previous research. As previous investigations show, the accuracy can be further improved. For this purpose, we employed K-means clustering for the categorization of class labels. Further, we applied classification models to selected features. Particle Swarm Optimization is utilized to optimize ML models. We evaluated the performance of models through precision, accuracy, recall, f-measure, performance error metrics, and a confusion matrix. The results indicate that all the ML and optimized ML models achieve the maximum results; however, the SVM and optimized SVM models outperformed with the highest achieved accuracy, 99% and 99.80%, respectively. The accuracy of NB, Optimized NB, RF, Optimized RF and ensemble approaches are 93.90%, 93.80%, 98.70%, 99.50%, 98.80% and 97.60, respectively. In this way, we achieve maximum accuracy compared to previous studies, which was our goal." @default.
- W4328127101 created "2023-03-22" @default.
- W4328127101 creator A5009279124 @default.
- W4328127101 creator A5022459610 @default.
- W4328127101 creator A5030827985 @default.
- W4328127101 creator A5066947688 @default.
- W4328127101 creator A5069957039 @default.
- W4328127101 date "2023-03-21" @default.
- W4328127101 modified "2023-10-06" @default.
- W4328127101 title "Software Defect Prediction Analysis Using Machine Learning Techniques" @default.
- W4328127101 cites W1970065340 @default.
- W4328127101 cites W1974647637 @default.
- W4328127101 cites W2048232769 @default.
- W4328127101 cites W2090854192 @default.
- W4328127101 cites W2101728371 @default.
- W4328127101 cites W2188325445 @default.
- W4328127101 cites W2521200981 @default.
- W4328127101 cites W2620431462 @default.
- W4328127101 cites W2735995639 @default.
- W4328127101 cites W2783657687 @default.
- W4328127101 cites W2791812915 @default.
- W4328127101 cites W2945339223 @default.
- W4328127101 cites W2971269091 @default.
- W4328127101 cites W2995811388 @default.
- W4328127101 cites W3049042001 @default.
- W4328127101 cites W3093046707 @default.
- W4328127101 cites W3094433618 @default.
- W4328127101 cites W3100297620 @default.
- W4328127101 cites W3164640227 @default.
- W4328127101 cites W3182306886 @default.
- W4328127101 cites W4239232919 @default.
- W4328127101 doi "https://doi.org/10.3390/su15065517" @default.
- W4328127101 hasPublicationYear "2023" @default.
- W4328127101 type Work @default.
- W4328127101 citedByCount "2" @default.
- W4328127101 countsByYear W43281271012023 @default.
- W4328127101 crossrefType "journal-article" @default.
- W4328127101 hasAuthorship W4328127101A5009279124 @default.
- W4328127101 hasAuthorship W4328127101A5022459610 @default.
- W4328127101 hasAuthorship W4328127101A5030827985 @default.
- W4328127101 hasAuthorship W4328127101A5066947688 @default.
- W4328127101 hasAuthorship W4328127101A5069957039 @default.
- W4328127101 hasBestOaLocation W43281271011 @default.
- W4328127101 hasConcept C119857082 @default.
- W4328127101 hasConcept C12267149 @default.
- W4328127101 hasConcept C124101348 @default.
- W4328127101 hasConcept C138602881 @default.
- W4328127101 hasConcept C153180895 @default.
- W4328127101 hasConcept C154945302 @default.
- W4328127101 hasConcept C177264268 @default.
- W4328127101 hasConcept C199360897 @default.
- W4328127101 hasConcept C2777904410 @default.
- W4328127101 hasConcept C41008148 @default.
- W4328127101 hasConcept C73555534 @default.
- W4328127101 hasConcept C81669768 @default.
- W4328127101 hasConcept C85617194 @default.
- W4328127101 hasConceptScore W4328127101C119857082 @default.
- W4328127101 hasConceptScore W4328127101C12267149 @default.
- W4328127101 hasConceptScore W4328127101C124101348 @default.
- W4328127101 hasConceptScore W4328127101C138602881 @default.
- W4328127101 hasConceptScore W4328127101C153180895 @default.
- W4328127101 hasConceptScore W4328127101C154945302 @default.
- W4328127101 hasConceptScore W4328127101C177264268 @default.
- W4328127101 hasConceptScore W4328127101C199360897 @default.
- W4328127101 hasConceptScore W4328127101C2777904410 @default.
- W4328127101 hasConceptScore W4328127101C41008148 @default.
- W4328127101 hasConceptScore W4328127101C73555534 @default.
- W4328127101 hasConceptScore W4328127101C81669768 @default.
- W4328127101 hasConceptScore W4328127101C85617194 @default.
- W4328127101 hasIssue "6" @default.
- W4328127101 hasLocation W43281271011 @default.
- W4328127101 hasOpenAccess W4328127101 @default.
- W4328127101 hasPrimaryLocation W43281271011 @default.
- W4328127101 hasRelatedWork W2041399278 @default.
- W4328127101 hasRelatedWork W2056016498 @default.
- W4328127101 hasRelatedWork W2136184105 @default.
- W4328127101 hasRelatedWork W2336974148 @default.
- W4328127101 hasRelatedWork W2389470892 @default.
- W4328127101 hasRelatedWork W3013515612 @default.
- W4328127101 hasRelatedWork W3195168932 @default.
- W4328127101 hasRelatedWork W4321505170 @default.
- W4328127101 hasRelatedWork W2187500075 @default.
- W4328127101 hasRelatedWork W2345184372 @default.
- W4328127101 hasVolume "15" @default.
- W4328127101 isParatext "false" @default.
- W4328127101 isRetracted "false" @default.
- W4328127101 workType "article" @default.