Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328128650> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4328128650 endingPage "539" @default.
- W4328128650 startingPage "539" @default.
- W4328128650 abstract "Microscale single-crystal copper is widely used in electronics, communications and other fields due to its excellent properties such as high ductility, high toughness and good conductivity. Therefore, it is particularly important to research its fatigue life. In order to explore the influence of size effect, loading frequency and shear strain on the main slip surface on the fatigue life of microscale single-crystal copper based on in situ fatigue experimental data of microscale single-crystal copper, this paper used a BP neural network algorithm to construct a single-crystal copper fatigue life prediction network model. The data set included 14 groups of training data, with 11 groups as training sets and 3 groups as testing sets. The input characteristics were length, width, height, loading frequency and shear strain of the main sliding plane of a microscale single-crystal copper sample. The output characteristic was the fatigue life of microscale single-crystal copper. After training, the mean square error (MSE) of the model was 0.03, the absolute value error (MAE) was 0.125, and the correlation coefficient (R2) was 0.93271, indicating that the BP neural network algorithm can effectively predict the fatigue life of microscale single-crystal copper and has good generalization ability. This model can not only save the experimental time of fatigue life measurement of micro-scale single-crystal copper, but also optimize the properties of the material by taking equidistant points in the range of characteristic parameters. Therefore, the current study demonstrates an applicable and efficient methodology to evaluate the fatigue life of microscale materials in industrial applications." @default.
- W4328128650 created "2023-03-22" @default.
- W4328128650 creator A5008343751 @default.
- W4328128650 creator A5042684209 @default.
- W4328128650 date "2023-03-21" @default.
- W4328128650 modified "2023-09-26" @default.
- W4328128650 title "Artificial Neural Network for the Prediction of Fatigue Life of Microscale Single-Crystal Copper" @default.
- W4328128650 cites W1971102290 @default.
- W4328128650 cites W1987222778 @default.
- W4328128650 cites W2010873957 @default.
- W4328128650 cites W2050551815 @default.
- W4328128650 cites W2092872386 @default.
- W4328128650 cites W2342583851 @default.
- W4328128650 cites W2738806563 @default.
- W4328128650 cites W2755110721 @default.
- W4328128650 cites W2792268997 @default.
- W4328128650 cites W2800599538 @default.
- W4328128650 cites W2912185588 @default.
- W4328128650 cites W2925880907 @default.
- W4328128650 cites W2963643473 @default.
- W4328128650 cites W2985029456 @default.
- W4328128650 cites W2993809930 @default.
- W4328128650 cites W2995271063 @default.
- W4328128650 cites W3028897142 @default.
- W4328128650 cites W3113283709 @default.
- W4328128650 cites W3121577338 @default.
- W4328128650 cites W3197243272 @default.
- W4328128650 cites W3208422053 @default.
- W4328128650 cites W3216712409 @default.
- W4328128650 cites W4206945548 @default.
- W4328128650 cites W4213289208 @default.
- W4328128650 cites W4283756949 @default.
- W4328128650 cites W4293366124 @default.
- W4328128650 cites W4312182206 @default.
- W4328128650 cites W4313431818 @default.
- W4328128650 doi "https://doi.org/10.3390/cryst13030539" @default.
- W4328128650 hasPublicationYear "2023" @default.
- W4328128650 type Work @default.
- W4328128650 citedByCount "0" @default.
- W4328128650 crossrefType "journal-article" @default.
- W4328128650 hasAuthorship W4328128650A5008343751 @default.
- W4328128650 hasAuthorship W4328128650A5042684209 @default.
- W4328128650 hasBestOaLocation W43281286501 @default.
- W4328128650 hasConcept C127413603 @default.
- W4328128650 hasConcept C145420912 @default.
- W4328128650 hasConcept C154945302 @default.
- W4328128650 hasConcept C159985019 @default.
- W4328128650 hasConcept C179428855 @default.
- W4328128650 hasConcept C185592680 @default.
- W4328128650 hasConcept C191897082 @default.
- W4328128650 hasConcept C192562407 @default.
- W4328128650 hasConcept C199360897 @default.
- W4328128650 hasConcept C2781285689 @default.
- W4328128650 hasConcept C33923547 @default.
- W4328128650 hasConcept C41008148 @default.
- W4328128650 hasConcept C50644808 @default.
- W4328128650 hasConcept C544778455 @default.
- W4328128650 hasConcept C66938386 @default.
- W4328128650 hasConcept C73922627 @default.
- W4328128650 hasConcept C8010536 @default.
- W4328128650 hasConceptScore W4328128650C127413603 @default.
- W4328128650 hasConceptScore W4328128650C145420912 @default.
- W4328128650 hasConceptScore W4328128650C154945302 @default.
- W4328128650 hasConceptScore W4328128650C159985019 @default.
- W4328128650 hasConceptScore W4328128650C179428855 @default.
- W4328128650 hasConceptScore W4328128650C185592680 @default.
- W4328128650 hasConceptScore W4328128650C191897082 @default.
- W4328128650 hasConceptScore W4328128650C192562407 @default.
- W4328128650 hasConceptScore W4328128650C199360897 @default.
- W4328128650 hasConceptScore W4328128650C2781285689 @default.
- W4328128650 hasConceptScore W4328128650C33923547 @default.
- W4328128650 hasConceptScore W4328128650C41008148 @default.
- W4328128650 hasConceptScore W4328128650C50644808 @default.
- W4328128650 hasConceptScore W4328128650C544778455 @default.
- W4328128650 hasConceptScore W4328128650C66938386 @default.
- W4328128650 hasConceptScore W4328128650C73922627 @default.
- W4328128650 hasConceptScore W4328128650C8010536 @default.
- W4328128650 hasFunder F4320309612 @default.
- W4328128650 hasIssue "3" @default.
- W4328128650 hasLocation W43281286501 @default.
- W4328128650 hasOpenAccess W4328128650 @default.
- W4328128650 hasPrimaryLocation W43281286501 @default.
- W4328128650 hasRelatedWork W2082293200 @default.
- W4328128650 hasRelatedWork W2137307547 @default.
- W4328128650 hasRelatedWork W2365729495 @default.
- W4328128650 hasRelatedWork W2380293314 @default.
- W4328128650 hasRelatedWork W2387812693 @default.
- W4328128650 hasRelatedWork W2943188944 @default.
- W4328128650 hasRelatedWork W3008690834 @default.
- W4328128650 hasRelatedWork W3082440218 @default.
- W4328128650 hasRelatedWork W4242480814 @default.
- W4328128650 hasRelatedWork W4285802202 @default.
- W4328128650 hasVolume "13" @default.
- W4328128650 isParatext "false" @default.
- W4328128650 isRetracted "false" @default.
- W4328128650 workType "article" @default.