Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328129762> ?p ?o ?g. }
- W4328129762 endingPage "903" @default.
- W4328129762 startingPage "903" @default.
- W4328129762 abstract "The use of Artificial intelligence in healthcare has evolved substantially in recent years. In medical diagnosis, Artificial intelligence algorithms are used to forecast or diagnose a variety of life-threatening illnesses, including breast cancer, diabetes, heart disease, etc. The main objective of this study is to assess self-management practices among patients with type 2 diabetes in rural areas of Pakistan using Artificial intelligence and machine learning algorithms. Of particular note is the assessment of the factors associated with poor self-management activities, such as non-adhering to medications, poor eating habits, lack of physical activities, and poor glycemic control (HbA1c %). The sample of 200 participants was purposefully recruited from the medical clinics in rural areas of Pakistan. The artificial neural network algorithm and logistic regression classification algorithms were used to assess diabetes self-management activities. The diabetes dataset was split 80:20 between training and testing; 80% (160) instances were used for training purposes and 20% (40) instances were used for testing purposes, while the algorithms’ overall performance was measured using a confusion matrix. The current study found that self-management efforts and glycemic control were poor among diabetes patients in rural areas of Pakistan. The logistic regression model performance was evaluated based on the confusion matrix. The accuracy of the training set was 98%, while the test set’s accuracy was 97.5%; each set had a recall rate of 79% and 75%, respectively. The output of the confusion matrix showed that only 11 out of 200 patients were correctly assessed/classified as meeting diabetes self-management targets based on the values of HbA1c < 7%. We added a wide range of neurons (32 to 128) in the hidden layers to train the artificial neural network models. The results showed that the model with three hidden layers and Adam’s optimisation function achieved 98% accuracy on the validation set. This study has assessed the factors associated with poor self-management activities among patients with type 2 diabetes in rural areas of Pakistan. The use of a wide range of neurons in the hidden layers to train the artificial neural network models improved outcomes, confirming the model’s effectiveness and efficiency in assessing diabetes self-management activities from the required data attributes." @default.
- W4328129762 created "2023-03-22" @default.
- W4328129762 creator A5032449155 @default.
- W4328129762 creator A5035591389 @default.
- W4328129762 creator A5040896712 @default.
- W4328129762 creator A5054027598 @default.
- W4328129762 date "2023-03-21" @default.
- W4328129762 modified "2023-10-01" @default.
- W4328129762 title "Application of Artificial Intelligence in Assessing the Self-Management Practices of Patients with Type 2 Diabetes" @default.
- W4328129762 cites W108055309 @default.
- W4328129762 cites W1526324677 @default.
- W4328129762 cites W1605810139 @default.
- W4328129762 cites W1980496426 @default.
- W4328129762 cites W1984541135 @default.
- W4328129762 cites W2014772459 @default.
- W4328129762 cites W2049218134 @default.
- W4328129762 cites W2071409111 @default.
- W4328129762 cites W2083934961 @default.
- W4328129762 cites W2092783195 @default.
- W4328129762 cites W2096158243 @default.
- W4328129762 cites W2100495367 @default.
- W4328129762 cites W2101048693 @default.
- W4328129762 cites W2118650529 @default.
- W4328129762 cites W2120626375 @default.
- W4328129762 cites W2120794699 @default.
- W4328129762 cites W2148143831 @default.
- W4328129762 cites W2155837945 @default.
- W4328129762 cites W2159964692 @default.
- W4328129762 cites W2160041268 @default.
- W4328129762 cites W2166524451 @default.
- W4328129762 cites W2166678637 @default.
- W4328129762 cites W2168261002 @default.
- W4328129762 cites W2168996191 @default.
- W4328129762 cites W2530972738 @default.
- W4328129762 cites W2789525991 @default.
- W4328129762 cites W2799614871 @default.
- W4328129762 cites W2804354698 @default.
- W4328129762 cites W2891553246 @default.
- W4328129762 cites W2900327718 @default.
- W4328129762 cites W3013633526 @default.
- W4328129762 cites W3017000889 @default.
- W4328129762 cites W3121502893 @default.
- W4328129762 cites W4200088206 @default.
- W4328129762 cites W4210953420 @default.
- W4328129762 cites W4233275153 @default.
- W4328129762 cites W4249179470 @default.
- W4328129762 cites W4256445769 @default.
- W4328129762 cites W4280575807 @default.
- W4328129762 cites W4283332321 @default.
- W4328129762 cites W4318016644 @default.
- W4328129762 doi "https://doi.org/10.3390/healthcare11060903" @default.
- W4328129762 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36981560" @default.
- W4328129762 hasPublicationYear "2023" @default.
- W4328129762 type Work @default.
- W4328129762 citedByCount "0" @default.
- W4328129762 crossrefType "journal-article" @default.
- W4328129762 hasAuthorship W4328129762A5032449155 @default.
- W4328129762 hasAuthorship W4328129762A5035591389 @default.
- W4328129762 hasAuthorship W4328129762A5040896712 @default.
- W4328129762 hasAuthorship W4328129762A5054027598 @default.
- W4328129762 hasBestOaLocation W43281297621 @default.
- W4328129762 hasConcept C119857082 @default.
- W4328129762 hasConcept C134018914 @default.
- W4328129762 hasConcept C138602881 @default.
- W4328129762 hasConcept C151956035 @default.
- W4328129762 hasConcept C154945302 @default.
- W4328129762 hasConcept C160735492 @default.
- W4328129762 hasConcept C162324750 @default.
- W4328129762 hasConcept C2776217022 @default.
- W4328129762 hasConcept C2777180221 @default.
- W4328129762 hasConcept C2780473172 @default.
- W4328129762 hasConcept C41008148 @default.
- W4328129762 hasConcept C50522688 @default.
- W4328129762 hasConcept C50644808 @default.
- W4328129762 hasConcept C555293320 @default.
- W4328129762 hasConcept C71924100 @default.
- W4328129762 hasConceptScore W4328129762C119857082 @default.
- W4328129762 hasConceptScore W4328129762C134018914 @default.
- W4328129762 hasConceptScore W4328129762C138602881 @default.
- W4328129762 hasConceptScore W4328129762C151956035 @default.
- W4328129762 hasConceptScore W4328129762C154945302 @default.
- W4328129762 hasConceptScore W4328129762C160735492 @default.
- W4328129762 hasConceptScore W4328129762C162324750 @default.
- W4328129762 hasConceptScore W4328129762C2776217022 @default.
- W4328129762 hasConceptScore W4328129762C2777180221 @default.
- W4328129762 hasConceptScore W4328129762C2780473172 @default.
- W4328129762 hasConceptScore W4328129762C41008148 @default.
- W4328129762 hasConceptScore W4328129762C50522688 @default.
- W4328129762 hasConceptScore W4328129762C50644808 @default.
- W4328129762 hasConceptScore W4328129762C555293320 @default.
- W4328129762 hasConceptScore W4328129762C71924100 @default.
- W4328129762 hasIssue "6" @default.
- W4328129762 hasLocation W43281297621 @default.
- W4328129762 hasLocation W43281297622 @default.
- W4328129762 hasLocation W43281297623 @default.
- W4328129762 hasOpenAccess W4328129762 @default.
- W4328129762 hasPrimaryLocation W43281297621 @default.
- W4328129762 hasRelatedWork W2041827702 @default.