Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328135692> ?p ?o ?g. }
- W4328135692 endingPage "136846" @default.
- W4328135692 startingPage "136846" @default.
- W4328135692 abstract "Global climate change has led to a severe loss of water and land resources and has exacerbated food crisis concerns. The water-land-food nexus in agricultural irrigation systems is receiving increasing attention. However, for sustainable food production, land and water resources must be managed effectively. The allocation of agricultural water and land resource components involves a large amount of uncertainty regarding readily available water. A robust optimization model of water-land-food nexus for agricultural irrigation systems is presented in this study, which comprehensively considers the uncertainty of the system and optimizes the allocation of scarce water and land resources for diverse crops to maximize irrigation system productivity. Using the Yellow River Basin as a case study, the results revealed that the developed optimization model can successfully resolve the system uncertainty perturbation and provide the finest potential allocation of water and land resources. Its irrigation system productivity can attain 1.6843–1.7143 kg/m3, which is improved by 6.6%–8.5%, and it can also reveal the interaction between WLF-nexus systems. This study also discovered that crop type and proportion can be modified to improve resource-use efficiency based on regional water and land resource endowment. Finally, policy implications are proposed to enhance resource utilization efficiency." @default.
- W4328135692 created "2023-03-22" @default.
- W4328135692 creator A5014935216 @default.
- W4328135692 creator A5030127520 @default.
- W4328135692 creator A5068770496 @default.
- W4328135692 creator A5072651524 @default.
- W4328135692 date "2023-06-01" @default.
- W4328135692 modified "2023-09-23" @default.
- W4328135692 title "Robust optimization for sustainable agricultural management of the water-land-food nexus under uncertainty" @default.
- W4328135692 cites W1595159159 @default.
- W4328135692 cites W1990275757 @default.
- W4328135692 cites W1990311804 @default.
- W4328135692 cites W2021938355 @default.
- W4328135692 cites W2041759517 @default.
- W4328135692 cites W2044899848 @default.
- W4328135692 cites W2062972613 @default.
- W4328135692 cites W2072931966 @default.
- W4328135692 cites W2082663958 @default.
- W4328135692 cites W2092288318 @default.
- W4328135692 cites W2118578357 @default.
- W4328135692 cites W2131786799 @default.
- W4328135692 cites W2145096794 @default.
- W4328135692 cites W2295367903 @default.
- W4328135692 cites W2755116070 @default.
- W4328135692 cites W2782719990 @default.
- W4328135692 cites W2899481149 @default.
- W4328135692 cites W2902533895 @default.
- W4328135692 cites W2933093846 @default.
- W4328135692 cites W2935502470 @default.
- W4328135692 cites W2946256396 @default.
- W4328135692 cites W2950651437 @default.
- W4328135692 cites W2952042281 @default.
- W4328135692 cites W2957470014 @default.
- W4328135692 cites W2963252740 @default.
- W4328135692 cites W2983270513 @default.
- W4328135692 cites W2997826853 @default.
- W4328135692 cites W2999548858 @default.
- W4328135692 cites W3009710845 @default.
- W4328135692 cites W3012023890 @default.
- W4328135692 cites W3015378369 @default.
- W4328135692 cites W3025114501 @default.
- W4328135692 cites W3033438549 @default.
- W4328135692 cites W3033690494 @default.
- W4328135692 cites W3037957813 @default.
- W4328135692 cites W3046156393 @default.
- W4328135692 cites W3099010978 @default.
- W4328135692 cites W3119005645 @default.
- W4328135692 cites W3126159051 @default.
- W4328135692 cites W3128657158 @default.
- W4328135692 cites W3131134110 @default.
- W4328135692 cites W3153927363 @default.
- W4328135692 cites W3170969895 @default.
- W4328135692 cites W3190444002 @default.
- W4328135692 cites W3195646694 @default.
- W4328135692 cites W3201840519 @default.
- W4328135692 cites W3202770183 @default.
- W4328135692 cites W4200270701 @default.
- W4328135692 cites W4210932132 @default.
- W4328135692 cites W4213046799 @default.
- W4328135692 cites W4220655594 @default.
- W4328135692 cites W4224326674 @default.
- W4328135692 cites W4229460282 @default.
- W4328135692 cites W4280518540 @default.
- W4328135692 cites W4282034795 @default.
- W4328135692 cites W4283019645 @default.
- W4328135692 cites W4292342637 @default.
- W4328135692 doi "https://doi.org/10.1016/j.jclepro.2023.136846" @default.
- W4328135692 hasPublicationYear "2023" @default.
- W4328135692 type Work @default.
- W4328135692 citedByCount "0" @default.
- W4328135692 crossrefType "journal-article" @default.
- W4328135692 hasAuthorship W4328135692A5014935216 @default.
- W4328135692 hasAuthorship W4328135692A5030127520 @default.
- W4328135692 hasAuthorship W4328135692A5068770496 @default.
- W4328135692 hasAuthorship W4328135692A5072651524 @default.
- W4328135692 hasConcept C110158866 @default.
- W4328135692 hasConcept C118518473 @default.
- W4328135692 hasConcept C127413603 @default.
- W4328135692 hasConcept C128383755 @default.
- W4328135692 hasConcept C147176958 @default.
- W4328135692 hasConcept C148609458 @default.
- W4328135692 hasConcept C149635348 @default.
- W4328135692 hasConcept C153823671 @default.
- W4328135692 hasConcept C162324750 @default.
- W4328135692 hasConcept C166957645 @default.
- W4328135692 hasConcept C175605778 @default.
- W4328135692 hasConcept C176205827 @default.
- W4328135692 hasConcept C18903297 @default.
- W4328135692 hasConcept C205649164 @default.
- W4328135692 hasConcept C39432304 @default.
- W4328135692 hasConcept C41008148 @default.
- W4328135692 hasConcept C4792198 @default.
- W4328135692 hasConcept C524765639 @default.
- W4328135692 hasConcept C559400886 @default.
- W4328135692 hasConcept C86803240 @default.
- W4328135692 hasConcept C88862950 @default.
- W4328135692 hasConceptScore W4328135692C110158866 @default.
- W4328135692 hasConceptScore W4328135692C118518473 @default.