Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328137941> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4328137941 endingPage "1158" @default.
- W4328137941 startingPage "1152" @default.
- W4328137941 abstract "With the extensive utilization of lithium ion batteries as renewable energy source in electronics devices, smart network and electric vehicles, supplementary enhancements in the performance of lithium-ion batteries and accurate prediction of state of charge (SOC) are still a great challenge to battery research and innovation community. Machine learning (ML), which is one of the essential tools of artificial intelligence, is promptly changing many areas with its capability to learn from provided data and solve multifaceted tasks, and it has emerged as a new method used to solve research issues in the area of lithium ion batteries. In this paper, we investigate the relationship between input factors including current, voltage and temperature, and predicted SOC of lithium ion battery. The effectiveness of three ML models — linear regression, Gaussian process regression (GPR) and support vector machine (SVM) were assessed and compared. It was found that the predictions made by these models accurately matched the data from experiments." @default.
- W4328137941 created "2023-03-22" @default.
- W4328137941 creator A5052026703 @default.
- W4328137941 date "2023-03-01" @default.
- W4328137941 modified "2023-09-25" @default.
- W4328137941 title "Lithium-ion battery state of charge prediction based on machine learning approach" @default.
- W4328137941 cites W1964940342 @default.
- W4328137941 cites W1993754847 @default.
- W4328137941 cites W1996801827 @default.
- W4328137941 cites W2041278275 @default.
- W4328137941 cites W2060558956 @default.
- W4328137941 cites W2513919993 @default.
- W4328137941 cites W2534747019 @default.
- W4328137941 cites W2613389393 @default.
- W4328137941 cites W2884430236 @default.
- W4328137941 cites W2924182957 @default.
- W4328137941 cites W2971894235 @default.
- W4328137941 cites W2990143522 @default.
- W4328137941 cites W3007217854 @default.
- W4328137941 cites W3093475346 @default.
- W4328137941 doi "https://doi.org/10.1016/j.egyr.2023.03.091" @default.
- W4328137941 hasPublicationYear "2023" @default.
- W4328137941 type Work @default.
- W4328137941 citedByCount "0" @default.
- W4328137941 crossrefType "journal-article" @default.
- W4328137941 hasAuthorship W4328137941A5052026703 @default.
- W4328137941 hasBestOaLocation W43281379411 @default.
- W4328137941 hasConcept C111919701 @default.
- W4328137941 hasConcept C119599485 @default.
- W4328137941 hasConcept C119857082 @default.
- W4328137941 hasConcept C121332964 @default.
- W4328137941 hasConcept C12267149 @default.
- W4328137941 hasConcept C127413603 @default.
- W4328137941 hasConcept C134018914 @default.
- W4328137941 hasConcept C138331895 @default.
- W4328137941 hasConcept C154945302 @default.
- W4328137941 hasConcept C163258240 @default.
- W4328137941 hasConcept C165801399 @default.
- W4328137941 hasConcept C2776582896 @default.
- W4328137941 hasConcept C2778541603 @default.
- W4328137941 hasConcept C2779197387 @default.
- W4328137941 hasConcept C41008148 @default.
- W4328137941 hasConcept C555008776 @default.
- W4328137941 hasConcept C62520636 @default.
- W4328137941 hasConcept C71924100 @default.
- W4328137941 hasConcept C81692654 @default.
- W4328137941 hasConcept C98045186 @default.
- W4328137941 hasConceptScore W4328137941C111919701 @default.
- W4328137941 hasConceptScore W4328137941C119599485 @default.
- W4328137941 hasConceptScore W4328137941C119857082 @default.
- W4328137941 hasConceptScore W4328137941C121332964 @default.
- W4328137941 hasConceptScore W4328137941C12267149 @default.
- W4328137941 hasConceptScore W4328137941C127413603 @default.
- W4328137941 hasConceptScore W4328137941C134018914 @default.
- W4328137941 hasConceptScore W4328137941C138331895 @default.
- W4328137941 hasConceptScore W4328137941C154945302 @default.
- W4328137941 hasConceptScore W4328137941C163258240 @default.
- W4328137941 hasConceptScore W4328137941C165801399 @default.
- W4328137941 hasConceptScore W4328137941C2776582896 @default.
- W4328137941 hasConceptScore W4328137941C2778541603 @default.
- W4328137941 hasConceptScore W4328137941C2779197387 @default.
- W4328137941 hasConceptScore W4328137941C41008148 @default.
- W4328137941 hasConceptScore W4328137941C555008776 @default.
- W4328137941 hasConceptScore W4328137941C62520636 @default.
- W4328137941 hasConceptScore W4328137941C71924100 @default.
- W4328137941 hasConceptScore W4328137941C81692654 @default.
- W4328137941 hasConceptScore W4328137941C98045186 @default.
- W4328137941 hasFunder F4320328105 @default.
- W4328137941 hasLocation W43281379411 @default.
- W4328137941 hasOpenAccess W4328137941 @default.
- W4328137941 hasPrimaryLocation W43281379411 @default.
- W4328137941 hasRelatedWork W1511958511 @default.
- W4328137941 hasRelatedWork W1995833271 @default.
- W4328137941 hasRelatedWork W1998369936 @default.
- W4328137941 hasRelatedWork W2847350577 @default.
- W4328137941 hasRelatedWork W2909794028 @default.
- W4328137941 hasRelatedWork W3120607508 @default.
- W4328137941 hasRelatedWork W3151298562 @default.
- W4328137941 hasRelatedWork W3194582348 @default.
- W4328137941 hasRelatedWork W4207007999 @default.
- W4328137941 hasRelatedWork W2581212947 @default.
- W4328137941 hasVolume "9" @default.
- W4328137941 isParatext "false" @default.
- W4328137941 isRetracted "false" @default.
- W4328137941 workType "article" @default.