Matches in SemOpenAlex for { <https://semopenalex.org/work/W434213062> ?p ?o ?g. }
Showing items 1 to 42 of
42
with 100 items per page.
- W434213062 abstract "Preface. 1 Introduction. 1.1 How the Story Began. 1.1.1 Structure Periodicity and Modulated Phases. 1.1.2 Ferromagnetic and Ferroelectric Domains. 1.2 First Theoretical Approaches for Competing Interactions. 1.2.1 Frenkel-Kontorova Model. 1.2.2 Theoretical Models of the Magnetic/Ferroelectric Domains. 1.2.2.1 Phenomenology of the Dipolar Interaction. 1.2.2.2 Phenomenology of the Exchange and Exchange-Like Interactions. 1.2.2.3 Mechanism of the Domain Formation. 1.3 Summary. 1.4 Exercises. References. 2 Self-Competition: or How to Choose the Best from the Worst. 2.1 Frustration: The World is not Perfect. 2.2 Why is an Understanding of Frustration Phenomena Important for Nanosystems? 2.3 Ising, XY, and Heisenberg Statistical Models. 2.4 Order-Disorder Phenomena. 2.4.1 Phase Transitions and their Characterization. 2.4.2 Order Below a Critical Temperature. 2.4.3 Measure of Frustration: Local Energy Parameter. 2.5 Self-Competition of the Short-Range Interactions. 2.5.1 Ising Antiferromagnet on a Lattice. 2.5.1.1 Triangular Lattice. 2.5.1.2 Kagome Lattice. 2.5.1.3 Ising Antiferromagnet on Aperiodic Tilings. 2.5.2 Heisenberg Antiferromagnet on a Lattice. 2.5.2.1 Triangular and Kagome Lattices. 2.5.2.2 Aperiodic Tilings. 2.5.3 Three-Dimensional Spin Structure on a Periodic Two-Dimensional Lattice: Itinerant Systems. 2.5.4 Frustration Squeezed Out. 2.6 Self-Competition of the Long-Range Interactions. 2.6.1 Dipolar Interactions. 2.6.1.1 Localized Ising Moments on a Periodic Lattice. 2.6.1.2 Localized Vector Moments on a Periodic Lattice. 2.6.1.3 Localized Vector Moments on Aperiodic Tilings. 2.6.1.4 Delocalized Moments with Given Orientation: Two-Dimensional Electron Wigner Crystal. 2.6.2 Multipolar Interactions: Why Might that be Interesting? 2.6.2.1 Multipolar Moments of Molecular Systems and Bose-Einstein Condensates. 2.6.2.2 Multipolar Moments of Nanomagnetic Particles. 2.6.2.3 Multipole-Multipole Interactions. 2.6.2.4 Ground States for Multipoles of Even Symmetry: Quadrupolar and Hexadecapolar Patterns. 2.6.2.5 Ground States for Multipoles of Odd Symmetry: Octopolar and Dotriacontapolar Patterns. 2.7 Summary. 2.8 Exercises. References. 3 Competition Between a Short- and a Long-Range Interaction. 3.1 Localized Particles. 3.1.1 Competition Between the Ferromagnetic Exchange and the Dipolar Interaction: Ising Spins. 3.1.1.1 Stripes or Checkerboard? 3.1.1.2 Scaling Theory. 3.1.1.3 Stripes in an External Magnetic Field: Bubbles. 3.1.2 Competition Between the Ferromagnetic Exchange and the Dipolar Interaction: Vector Spins. 3.1.2.1 Films: Dominating Exchange Interaction. 3.1.2.2 Films: Dominating Dipolar Interaction. 3.1.2.3 Nanoparticles with Periodic Atomic Structure. 3.1.2.4 Nanoparticles with Aperiodic Atomic Structure. 3.1.3 Competition Between the Antiferromagnetic Exchange and the Dipolar Interaction. 3.1.3.1 Periodic Lattices. 3.1.3.2 Aperiodic Lattices. 3.1.4 Neural Networks. 3.2 Delocalized Particles. 3.2.1 Self-Assembled Domain Structures on a Solid Surface: Dipolar Lattice Gas Model. 3.2.2 Self-Organization in Langmuir Monolayers. 3.2.3 Self-Organization in Block Copolymer Systems. 3.2.4 Self-Organization in Colloidal Systems. 3.2.4.1 Planar Colloidal Crystals. 3.2.4.2 Patterns in Ferrofluids. 3.2.4.3 Systems of Magnetic Holes. 3.2.5 Two-Dimensional Electron Systems. 3.2.6 Patterns in Animal Colors. 3.3 Exercises. References. 4 Competition Between Interactions on a Similar Length Scale. 4.1 Two Short- or Mid-Range Interactions. 4.1.1 Super-Exchange and Indirect Exchange Interactions. 4.1.2 Spin Glass. 4.1.3 Non-Collinear Magnetism at Surfaces. 4.1.3.1 Competing Heisenberg Exchange Interactions (Hexagonal Lattice). 4.1.3.2 Competing Heisenberg Exchange Couplings (Square Lattice). 4.1.3.3 Antiferromagnetic Domain Wall as a Spin Spiral. 4.1.3.4 Spin Spiral State in the Presence of Dipolar Interactions. 4.1.4 Two Short-Range Repulsive Interactions. 4.2 Two Long-Range Interactions. 4.2.1 Systems with Dipolar and Quadrupolar Interactions. 4.2.2 Systems with Dipolar and Octopolar Interactions. 4.2.2.1 Combined Multipoles in Nanomagnetic Arrays. 4.2.2.2 Magnetization Reversal in Nanomagnetic Arrays. 4.3 Summary. 4.4 Exercises. References. 5 Interplay Between Anisotropies and Interparticle Interactions 145 5.1 Interplay Between the Structural Anisotropy and the Short-Range Repulsion/Attraction: Liquid Crystals. 5.1.1 Liquid Crystal Phases. 5.1.2 Liquid Crystal Patterns: Textures and Disclinations. 5.1.3 The Lattice Model of Liquid Crystals. 5.2 Competition Between the Spin-Orbit Coupling and the Long-Range Dipolar Energy: Ultrathin Magnetic Films. 5.2.1 Shape Anisotropy from Dipolar Interactions. 5.2.2 Perpendicular Magnetic Anisotropy. 5.2.3 Anisotropy Phase Diagram. 5.2.4 Magnetic Structure of the Spin Reorientation Transition (SRT). 5.2.4.1 Regimes of Vertical and Planar Magnetization. 5.2.4.2 SRT via the Twisted Phase. 5.2.4.3 SRT via the State of Canted Magnetization. 5.2.4.4 SRT via the State of Coexisting Phases. 5.3 Magnetic Nanoplatelets. 5.3.1 Size-Dependence of Shape Anisotropy in Discrete Atomic Approximation. 5.3.2 Multiplicative Separation of Discrete and Continuum Contributions. 5.3.3 Size-Dependent Spin Reorientation Transition. 5.3.4 Size-Dependence of Crystallographic Anisotropy. 5.4 Summary. 5.5 Exercises. References. 6 Dynamic Self-Organization. 6.1 Diffusion-Limited Aggregation. 6.1.1 Computer Model. 6.1.2 Diffusion-Limited Aggregation Altered by Interactions. 6.2 Dynamic Wave Patterns. 6.2.1 Pattern Dynamics of Spin Waves. 6.2.2 Liquid Crystals in a Rotating Magnetic Field. 6.2.3 Standing Waves in Two-Dimensional Electron Gas: Quantum Mirages. 6.3 Summary. References. Subject Index." @default.
- W434213062 created "2016-06-24" @default.
- W434213062 creator A5032034874 @default.
- W434213062 date "2007-01-26" @default.
- W434213062 modified "2023-09-27" @default.
- W434213062 title "Competing Interactions and Patterns in Nanoworld" @default.
- W434213062 doi "https://doi.org/10.1002/9783527610501" @default.
- W434213062 hasPublicationYear "2007" @default.
- W434213062 type Work @default.
- W434213062 sameAs 434213062 @default.
- W434213062 citedByCount "41" @default.
- W434213062 countsByYear W4342130622012 @default.
- W434213062 countsByYear W4342130622013 @default.
- W434213062 countsByYear W4342130622014 @default.
- W434213062 countsByYear W4342130622015 @default.
- W434213062 countsByYear W4342130622016 @default.
- W434213062 countsByYear W4342130622017 @default.
- W434213062 countsByYear W4342130622018 @default.
- W434213062 countsByYear W4342130622020 @default.
- W434213062 countsByYear W4342130622021 @default.
- W434213062 countsByYear W4342130622022 @default.
- W434213062 crossrefType "monograph" @default.
- W434213062 hasAuthorship W434213062A5032034874 @default.
- W434213062 hasConcept C17744445 @default.
- W434213062 hasConceptScore W434213062C17744445 @default.
- W434213062 hasLocation W4342130621 @default.
- W434213062 hasOpenAccess W434213062 @default.
- W434213062 hasPrimaryLocation W4342130621 @default.
- W434213062 hasRelatedWork W2724734218 @default.
- W434213062 hasRelatedWork W2733848258 @default.
- W434213062 hasRelatedWork W2743539335 @default.
- W434213062 hasRelatedWork W2748952813 @default.
- W434213062 hasRelatedWork W2890326160 @default.
- W434213062 hasRelatedWork W2899084033 @default.
- W434213062 hasRelatedWork W2922049016 @default.
- W434213062 hasRelatedWork W2949263084 @default.
- W434213062 hasRelatedWork W2955725829 @default.
- W434213062 hasRelatedWork W594353338 @default.
- W434213062 isParatext "false" @default.
- W434213062 isRetracted "false" @default.
- W434213062 magId "434213062" @default.
- W434213062 workType "book" @default.