Matches in SemOpenAlex for { <https://semopenalex.org/work/W435099712> ?p ?o ?g. }
- W435099712 abstract "Stability of Couette flow under different conditions and assuming a narrow gap annulus has received great attention in the past. Notable among these are studies by Taylor (1923), Chandrasekhar (1953, 1954, 1961), Edwards (1958), Becker and Kaye (1962), Lai (1962), Kurzweg (1963), Harris and Reid (1964), Krueger, Gross and DiPrima (1966), Hassard, Cheng and Ludford (1972), Bahl (1972), Soundalgekar, Takhar, Smith (1981), Takhar, Smith and Soundalgekar (1985). Takhar, Ali and Soundalgekar (to be published) presented the study of MHD stability of Couette flow on taking into account the presence of radial temperature gradient and the axial magnetic field, in a narrow-gap annulus. The corresponding stability of Couette flow in a wide-gap annulus has been studied by very few researchers because of its complex nature. Notable among these are studies by Chandrasekhar (1958). Chandrasekhar and Elbert (1962), Walowit, Tsao and DiPrima (1964), Sparrow, Munro and Jonsson (1964), Astill and Chung (1976), Takhar, Ali and Soundalekar (1988), Chandrasehkar (1958) derived results for (eta = frac{1}{2}) = (i.e. ({R_1} = frac{1}{2}{R_2})) whereas in other papers, Chandrasekhar and Elbert (1962) simplified the numerical procedure by considering the corresponding adjoint eigenvalue problem. Walowit et al. (1964) simplified the method of solution of an eigenvalue problem by giving an algebraic series solution instead of Chandrasekhar’s trigonometric series solution. Sparrow et al., Takhar et al. solved the eigenvalue problem numerically using the Runge-Kutta method, whereas Asti11 and Chung solved it by a finite-difference method. The only paper which deals with MHD stability of wide-gap problem is the one by Chang and Sartory (1967). It deals with the stability of the flow of an electrically conducting fluid in a wide-gap of permeable, perfectly conducting cylinders. In the narrow gap case, there are many papers on the MHD stability of Taylor flows with both conducting and non-conducting walls of the two concentric cylinders. So Ali, Soundalgekar and Takhar (to be published) solved this MHD stability of Taylor flow for both conducting and non-conducting impermeable cylinders separated by a wide-gap. This eigenvalue problem was solved numerically following the method of Harris and Reid (1964) and Sparrow et al. (1964). In Chang and Sartory’s (1967) paper, the basic velocity was assumed to be A/r, where A is a constant. We have assumed the basic velocity of the form Ar + B/r to solve this eigenvalue problem. Hence a comparison is not possible between our results and those of Chang and Sartory (1967)." @default.
- W435099712 created "2016-06-24" @default.
- W435099712 creator A5031836886 @default.
- W435099712 creator A5043030082 @default.
- W435099712 creator A5074424771 @default.
- W435099712 date "1992-01-01" @default.
- W435099712 modified "2023-09-25" @default.
- W435099712 title "Effects of Radial Temperature Gradient on MHD Stability of Couette Flow between Conducting Cylinders - A Wide Gap Problem" @default.
- W435099712 cites W1623303699 @default.
- W435099712 cites W1969886560 @default.
- W435099712 cites W1971582307 @default.
- W435099712 cites W1975595521 @default.
- W435099712 cites W1975996684 @default.
- W435099712 cites W1992337654 @default.
- W435099712 cites W2000208834 @default.
- W435099712 cites W2024408531 @default.
- W435099712 cites W2048836600 @default.
- W435099712 cites W2056630757 @default.
- W435099712 cites W2077794453 @default.
- W435099712 cites W2089444942 @default.
- W435099712 cites W2123830143 @default.
- W435099712 cites W2124349344 @default.
- W435099712 cites W2134733865 @default.
- W435099712 cites W2136776493 @default.
- W435099712 cites W4247853169 @default.
- W435099712 cites W1975487695 @default.
- W435099712 doi "https://doi.org/10.1007/978-1-4615-3438-9_24" @default.
- W435099712 hasPublicationYear "1992" @default.
- W435099712 type Work @default.
- W435099712 sameAs 435099712 @default.
- W435099712 citedByCount "1" @default.
- W435099712 countsByYear W4350997122020 @default.
- W435099712 crossrefType "book-chapter" @default.
- W435099712 hasAuthorship W435099712A5031836886 @default.
- W435099712 hasAuthorship W435099712A5043030082 @default.
- W435099712 hasAuthorship W435099712A5074424771 @default.
- W435099712 hasConcept C115260700 @default.
- W435099712 hasConcept C121332964 @default.
- W435099712 hasConcept C134306372 @default.
- W435099712 hasConcept C135757623 @default.
- W435099712 hasConcept C150846664 @default.
- W435099712 hasConcept C150936888 @default.
- W435099712 hasConcept C158693339 @default.
- W435099712 hasConcept C159985019 @default.
- W435099712 hasConcept C192562407 @default.
- W435099712 hasConcept C197445014 @default.
- W435099712 hasConcept C207821765 @default.
- W435099712 hasConcept C2524010 @default.
- W435099712 hasConcept C2779099160 @default.
- W435099712 hasConcept C31532427 @default.
- W435099712 hasConcept C33923547 @default.
- W435099712 hasConcept C38349280 @default.
- W435099712 hasConcept C43466630 @default.
- W435099712 hasConcept C44870925 @default.
- W435099712 hasConcept C57879066 @default.
- W435099712 hasConcept C62520636 @default.
- W435099712 hasConcept C67576285 @default.
- W435099712 hasConcept C88006088 @default.
- W435099712 hasConceptScore W435099712C115260700 @default.
- W435099712 hasConceptScore W435099712C121332964 @default.
- W435099712 hasConceptScore W435099712C134306372 @default.
- W435099712 hasConceptScore W435099712C135757623 @default.
- W435099712 hasConceptScore W435099712C150846664 @default.
- W435099712 hasConceptScore W435099712C150936888 @default.
- W435099712 hasConceptScore W435099712C158693339 @default.
- W435099712 hasConceptScore W435099712C159985019 @default.
- W435099712 hasConceptScore W435099712C192562407 @default.
- W435099712 hasConceptScore W435099712C197445014 @default.
- W435099712 hasConceptScore W435099712C207821765 @default.
- W435099712 hasConceptScore W435099712C2524010 @default.
- W435099712 hasConceptScore W435099712C2779099160 @default.
- W435099712 hasConceptScore W435099712C31532427 @default.
- W435099712 hasConceptScore W435099712C33923547 @default.
- W435099712 hasConceptScore W435099712C38349280 @default.
- W435099712 hasConceptScore W435099712C43466630 @default.
- W435099712 hasConceptScore W435099712C44870925 @default.
- W435099712 hasConceptScore W435099712C57879066 @default.
- W435099712 hasConceptScore W435099712C62520636 @default.
- W435099712 hasConceptScore W435099712C67576285 @default.
- W435099712 hasConceptScore W435099712C88006088 @default.
- W435099712 hasLocation W4350997121 @default.
- W435099712 hasOpenAccess W435099712 @default.
- W435099712 hasPrimaryLocation W4350997121 @default.
- W435099712 hasRelatedWork W128338088 @default.
- W435099712 hasRelatedWork W1987468503 @default.
- W435099712 hasRelatedWork W2005953723 @default.
- W435099712 hasRelatedWork W2022657326 @default.
- W435099712 hasRelatedWork W2023952900 @default.
- W435099712 hasRelatedWork W2034082793 @default.
- W435099712 hasRelatedWork W2037389358 @default.
- W435099712 hasRelatedWork W2052032664 @default.
- W435099712 hasRelatedWork W2063984270 @default.
- W435099712 hasRelatedWork W2093010035 @default.
- W435099712 hasRelatedWork W2112057211 @default.
- W435099712 hasRelatedWork W2337646348 @default.
- W435099712 hasRelatedWork W2951602340 @default.
- W435099712 hasRelatedWork W3047529143 @default.
- W435099712 hasRelatedWork W3119728532 @default.
- W435099712 hasRelatedWork W3165327113 @default.
- W435099712 hasRelatedWork W3209846433 @default.