Matches in SemOpenAlex for { <https://semopenalex.org/work/W4352977382> ?p ?o ?g. }
- W4352977382 endingPage "31051" @default.
- W4352977382 startingPage "31036" @default.
- W4352977382 abstract "Over the past few years, great importance has been given to wireless sensor networks (WSNs) as they play a significant role in facilitating the world with daily life services like healthcare, military, social products, etc. However, heterogeneous nature of WSNs makes them prone to various attacks, which results in low throughput, and high network delay and high energy consumption. In the WSNs, routing is performed using different routing protocols like low-energy adaptive clustering hierarchy (LEACH), heterogeneous gateway-based energy-aware multi-hop routing (HMGEAR), etc. In such protocols, some nodes in the network may perform malicious activities. Therefore, four deep learning (DL) techniques and a real-time message content validation (RMCV) scheme based on blockchain are used in the proposed network for the detection of malicious nodes (MNs). Moreover, to analyse the routing data in the WSN, DL models are trained on a state-of-the-art dataset generated from LEACH, known as WSN-DS 2016. The WSN contains three types of nodes: sensor nodes, cluster heads (CHs) and the base station (BS). The CHs after aggregating the data received from the sensor nodes, send it towards the BS. Furthermore, to overcome the single point of failure issue, a decentralized blockchain is deployed on CHs and BS. Additionally, MNs are removed from the network using RMCV and DL techniques. Moreover, legitimate nodes (LNs) are registered in the blockchain network using proof-of-authority consensus protocol. The protocol outperforms proof-of-work in terms of computational cost. Later, routing is performed between the LNs using different routing protocols and the results are compared with original LEACH and HMGEAR protocols. The results show that the accuracy of GRU is 97%, LSTM is 96%, CNN is 92% and ANN is 90%. Throughput, delay and the death of the first node are computed for LEACH, LEACH with DL, LEACH with RMCV, HMGEAR, HMGEAR with DL and HMGEAR with RMCV. Moreover, Oyente is used to perform the formal security analysis of the designed smart contract. The analysis shows that blockchain network is resilient against vulnerabilities." @default.
- W4352977382 created "2023-03-23" @default.
- W4352977382 creator A5020717946 @default.
- W4352977382 creator A5031927335 @default.
- W4352977382 creator A5035336547 @default.
- W4352977382 creator A5043620442 @default.
- W4352977382 creator A5055380996 @default.
- W4352977382 creator A5066735056 @default.
- W4352977382 date "2023-01-01" @default.
- W4352977382 modified "2023-10-14" @default.
- W4352977382 title "A Blockchain-Based Deep-Learning-Driven Architecture for Quality Routing in Wireless Sensor Networks" @default.
- W4352977382 cites W166631009 @default.
- W4352977382 cites W2106335692 @default.
- W4352977382 cites W2170239483 @default.
- W4352977382 cites W2173841966 @default.
- W4352977382 cites W2353034757 @default.
- W4352977382 cites W2525336835 @default.
- W4352977382 cites W2592416275 @default.
- W4352977382 cites W2746594505 @default.
- W4352977382 cites W2800753141 @default.
- W4352977382 cites W2803669122 @default.
- W4352977382 cites W2899142767 @default.
- W4352977382 cites W2912977751 @default.
- W4352977382 cites W2915872201 @default.
- W4352977382 cites W2920852263 @default.
- W4352977382 cites W2995544081 @default.
- W4352977382 cites W2995851867 @default.
- W4352977382 cites W2998977406 @default.
- W4352977382 cites W3000455992 @default.
- W4352977382 cites W3014579956 @default.
- W4352977382 cites W3043097943 @default.
- W4352977382 cites W3080538652 @default.
- W4352977382 cites W3088309181 @default.
- W4352977382 cites W3126817508 @default.
- W4352977382 cites W3153313568 @default.
- W4352977382 cites W3157390437 @default.
- W4352977382 cites W3158482781 @default.
- W4352977382 cites W3183566165 @default.
- W4352977382 cites W3201624531 @default.
- W4352977382 cites W3203140391 @default.
- W4352977382 cites W3203926818 @default.
- W4352977382 cites W3206891657 @default.
- W4352977382 cites W3210342902 @default.
- W4352977382 cites W3210454478 @default.
- W4352977382 cites W3217772467 @default.
- W4352977382 cites W4205127836 @default.
- W4352977382 cites W4206450404 @default.
- W4352977382 cites W4206587050 @default.
- W4352977382 cites W4206690576 @default.
- W4352977382 cites W4206769398 @default.
- W4352977382 cites W4214916010 @default.
- W4352977382 cites W4220766727 @default.
- W4352977382 cites W4289518429 @default.
- W4352977382 cites W4313012170 @default.
- W4352977382 doi "https://doi.org/10.1109/access.2023.3259982" @default.
- W4352977382 hasPublicationYear "2023" @default.
- W4352977382 type Work @default.
- W4352977382 citedByCount "1" @default.
- W4352977382 countsByYear W43529773822023 @default.
- W4352977382 crossrefType "journal-article" @default.
- W4352977382 hasAuthorship W4352977382A5020717946 @default.
- W4352977382 hasAuthorship W4352977382A5031927335 @default.
- W4352977382 hasAuthorship W4352977382A5035336547 @default.
- W4352977382 hasAuthorship W4352977382A5043620442 @default.
- W4352977382 hasAuthorship W4352977382A5055380996 @default.
- W4352977382 hasAuthorship W4352977382A5066735056 @default.
- W4352977382 hasBestOaLocation W43529773821 @default.
- W4352977382 hasConcept C104954878 @default.
- W4352977382 hasConcept C119599485 @default.
- W4352977382 hasConcept C120314980 @default.
- W4352977382 hasConcept C127413603 @default.
- W4352977382 hasConcept C24590314 @default.
- W4352977382 hasConcept C2780165032 @default.
- W4352977382 hasConcept C31258907 @default.
- W4352977382 hasConcept C41008148 @default.
- W4352977382 hasConcept C74172769 @default.
- W4352977382 hasConcept C89305328 @default.
- W4352977382 hasConcept C9659607 @default.
- W4352977382 hasConceptScore W4352977382C104954878 @default.
- W4352977382 hasConceptScore W4352977382C119599485 @default.
- W4352977382 hasConceptScore W4352977382C120314980 @default.
- W4352977382 hasConceptScore W4352977382C127413603 @default.
- W4352977382 hasConceptScore W4352977382C24590314 @default.
- W4352977382 hasConceptScore W4352977382C2780165032 @default.
- W4352977382 hasConceptScore W4352977382C31258907 @default.
- W4352977382 hasConceptScore W4352977382C41008148 @default.
- W4352977382 hasConceptScore W4352977382C74172769 @default.
- W4352977382 hasConceptScore W4352977382C89305328 @default.
- W4352977382 hasConceptScore W4352977382C9659607 @default.
- W4352977382 hasLocation W43529773821 @default.
- W4352977382 hasLocation W43529773822 @default.
- W4352977382 hasOpenAccess W4352977382 @default.
- W4352977382 hasPrimaryLocation W43529773821 @default.
- W4352977382 hasRelatedWork W2001137988 @default.
- W4352977382 hasRelatedWork W2016277591 @default.
- W4352977382 hasRelatedWork W2106935963 @default.
- W4352977382 hasRelatedWork W2113913860 @default.
- W4352977382 hasRelatedWork W2137084078 @default.