Matches in SemOpenAlex for { <https://semopenalex.org/work/W4353018185> ?p ?o ?g. }
- W4353018185 abstract "The use of water contaminated with Salmonella for produce production contributes to foodborne disease burden. To reduce human health risks, there is a need for novel, targeted approaches for assessing the pathogen status of agricultural water. We investigated the utility of water microbiome data for predicting Salmonella contamination of streams used to source water for produce production. Grab samples were collected from 60 New York streams in 2018 and tested for Salmonella. Separately, DNA was extracted from the samples and used for Illumina shotgun metagenomic sequencing. Reads were trimmed and used to assign taxonomy with Kraken2. Conditional forest (CF), regularized random forest (RRF), and support vector machine (SVM) models were implemented to predict Salmonella contamination. Model performance was assessed using 10-fold cross-validation repeated 10 times to quantify area under the curve (AUC) and Kappa score. CF models outperformed the other two algorithms based on AUC (0.86, CF; 0.81, RRF; 0.65, SVM) and Kappa score (0.53, CF; 0.41, RRF; 0.12, SVM). The taxa that were most informative for accurately predicting Salmonella contamination based on CF were compared to taxa identified by ALDEx2 as being differentially abundant between Salmonella-positive and -negative samples. CF and differential abundance tests both identified Aeromonas salmonicida (variable importance [VI] = 0.012) and Aeromonas sp. strain CA23 (VI = 0.025) as the two most informative taxa for predicting Salmonella contamination. Our findings suggest that microbiome-based models may provide an alternative to or complement existing water monitoring strategies. Similarly, the informative taxa identified in this study warrant further investigation as potential indicators of Salmonella contamination of agricultural water. IMPORTANCE Understanding the associations between surface water microbiome composition and the presence of foodborne pathogens, such as Salmonella, can facilitate the identification of novel indicators of Salmonella contamination. This study assessed the utility of microbiome data and three machine learning algorithms for predicting Salmonella contamination of Northeastern streams. The research reported here both expanded the knowledge on the microbiome composition of surface waters and identified putative novel indicators (i.e., Aeromonas species) for Salmonella in Northeastern streams. These putative indicators warrant further research to assess whether they are consistent indicators of Salmonella contamination across regions, waterways, and years not represented in the data set used in this study. Validated indicators identified using microbiome data may be used as targets in the development of rapid (e.g., PCR-based) detection assays for the assessment of microbial safety of agricultural surface waters." @default.
- W4353018185 created "2023-03-23" @default.
- W4353018185 creator A5001108752 @default.
- W4353018185 creator A5017928391 @default.
- W4353018185 creator A5018277507 @default.
- W4353018185 creator A5031685831 @default.
- W4353018185 date "2023-04-13" @default.
- W4353018185 modified "2023-09-30" @default.
- W4353018185 title "Conditional Forest Models Built Using Metagenomic Data Accurately Predicted Salmonella Contamination in Northeastern Streams" @default.
- W4353018185 cites W1483077637 @default.
- W4353018185 cites W1562848178 @default.
- W4353018185 cites W186644084 @default.
- W4353018185 cites W1963617975 @default.
- W4353018185 cites W1963962444 @default.
- W4353018185 cites W1967126015 @default.
- W4353018185 cites W1989504611 @default.
- W4353018185 cites W1991844555 @default.
- W4353018185 cites W2022604714 @default.
- W4353018185 cites W2025912735 @default.
- W4353018185 cites W2034987103 @default.
- W4353018185 cites W2043464012 @default.
- W4353018185 cites W2047135937 @default.
- W4353018185 cites W2073792037 @default.
- W4353018185 cites W2092768888 @default.
- W4353018185 cites W2107903949 @default.
- W4353018185 cites W2131271579 @default.
- W4353018185 cites W2143481518 @default.
- W4353018185 cites W2146316143 @default.
- W4353018185 cites W2150366208 @default.
- W4353018185 cites W2153755764 @default.
- W4353018185 cites W2156002203 @default.
- W4353018185 cites W2156975150 @default.
- W4353018185 cites W2157825442 @default.
- W4353018185 cites W2158146143 @default.
- W4353018185 cites W2159414463 @default.
- W4353018185 cites W2163250554 @default.
- W4353018185 cites W2165111832 @default.
- W4353018185 cites W2166844705 @default.
- W4353018185 cites W2230207894 @default.
- W4353018185 cites W2345658906 @default.
- W4353018185 cites W2473826443 @default.
- W4353018185 cites W2599192857 @default.
- W4353018185 cites W2769542288 @default.
- W4353018185 cites W2791355027 @default.
- W4353018185 cites W2795633213 @default.
- W4353018185 cites W2901437971 @default.
- W4353018185 cites W2948100134 @default.
- W4353018185 cites W2950549811 @default.
- W4353018185 cites W2953583829 @default.
- W4353018185 cites W2990618091 @default.
- W4353018185 cites W2991086784 @default.
- W4353018185 cites W2991439545 @default.
- W4353018185 cites W3005286541 @default.
- W4353018185 cites W3007945801 @default.
- W4353018185 cites W3011240772 @default.
- W4353018185 cites W3033330873 @default.
- W4353018185 cites W304574495 @default.
- W4353018185 cites W3046142126 @default.
- W4353018185 cites W3091820148 @default.
- W4353018185 cites W3111473227 @default.
- W4353018185 cites W3120153598 @default.
- W4353018185 cites W3122216490 @default.
- W4353018185 cites W3127298225 @default.
- W4353018185 cites W3132461044 @default.
- W4353018185 cites W4224063219 @default.
- W4353018185 cites W4225983369 @default.
- W4353018185 cites W4239510810 @default.
- W4353018185 cites W4249468678 @default.
- W4353018185 cites W589807979 @default.
- W4353018185 doi "https://doi.org/10.1128/spectrum.00381-23" @default.
- W4353018185 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36946722" @default.
- W4353018185 hasPublicationYear "2023" @default.
- W4353018185 type Work @default.
- W4353018185 citedByCount "0" @default.
- W4353018185 crossrefType "journal-article" @default.
- W4353018185 hasAuthorship W4353018185A5001108752 @default.
- W4353018185 hasAuthorship W4353018185A5017928391 @default.
- W4353018185 hasAuthorship W4353018185A5018277507 @default.
- W4353018185 hasAuthorship W4353018185A5031685831 @default.
- W4353018185 hasBestOaLocation W43530181851 @default.
- W4353018185 hasConcept C101985253 @default.
- W4353018185 hasConcept C104317684 @default.
- W4353018185 hasConcept C112570922 @default.
- W4353018185 hasConcept C143121216 @default.
- W4353018185 hasConcept C15151743 @default.
- W4353018185 hasConcept C154945302 @default.
- W4353018185 hasConcept C169258074 @default.
- W4353018185 hasConcept C18903297 @default.
- W4353018185 hasConcept C2779607309 @default.
- W4353018185 hasConcept C2780313371 @default.
- W4353018185 hasConcept C2781065037 @default.
- W4353018185 hasConcept C41008148 @default.
- W4353018185 hasConcept C51679486 @default.
- W4353018185 hasConcept C523546767 @default.
- W4353018185 hasConcept C54355233 @default.
- W4353018185 hasConcept C60644358 @default.
- W4353018185 hasConcept C70721500 @default.
- W4353018185 hasConcept C86803240 @default.
- W4353018185 hasConceptScore W4353018185C101985253 @default.
- W4353018185 hasConceptScore W4353018185C104317684 @default.