Matches in SemOpenAlex for { <https://semopenalex.org/work/W4353029173> ?p ?o ?g. }
- W4353029173 abstract "Abstract This study aims to improve the accuracy of forecasting the turnover intention of new college graduates by solving the imbalance data problem. For this purpose, data from the Korea Employment Information Service's Job Mobility Survey (Graduates Occupations Mobility Survey: GOMS) for college graduates were used. This data includes various items such as turnover intention, personal characteristics, and job characteristics of new college graduates, and the class ratio of turnover intention is imbalanced. For solving the imbalance data problem, the synthetic minority over-sampling technique (SMOTE) and generative adversarial networks (GAN) were used to balance class variables to examine the improvement of turnover intention prediction accuracy. After deriving the factors affecting the turnover intention by referring to previous studies, a turnover intention prediction model was constructed, and the model's prediction accuracy was analyzed by reflecting each data. As a result of the analysis, the highest predictive accuracy was found in class balanced data through generative adversarial networks rather than class imbalanced original data and class balanced data through SMOTE. The academic implication of this study is that first, the diversity of data sampling methods was presented by expanding and applying GAN, which are widely used in unstructured data sampling fields such as images and images, to structured data in business administration fields such as this study. Second, two refining processes were performed on data generated using generative adversarial networks to suggest a method for refining only data corresponding to a more minority class. The practical implication of this study is that it suggested a plan to predict the turnover intention of new college graduates early through the establishment of a predictive model using public data and machine learning." @default.
- W4353029173 created "2023-03-23" @default.
- W4353029173 creator A5007810885 @default.
- W4353029173 creator A5062314122 @default.
- W4353029173 creator A5083107003 @default.
- W4353029173 date "2023-03-22" @default.
- W4353029173 modified "2023-09-25" @default.
- W4353029173 title "A study on improving turnover intention forecasting by solving imbalanced data problems: focusing on SMOTE and generative adversarial networks" @default.
- W4353029173 cites W1517113043 @default.
- W4353029173 cites W1588282782 @default.
- W4353029173 cites W1997566808 @default.
- W4353029173 cites W2051350139 @default.
- W4353029173 cites W2067594023 @default.
- W4353029173 cites W2101112476 @default.
- W4353029173 cites W2103614420 @default.
- W4353029173 cites W2103715428 @default.
- W4353029173 cites W2139285475 @default.
- W4353029173 cites W2148143831 @default.
- W4353029173 cites W2150088099 @default.
- W4353029173 cites W2172231696 @default.
- W4353029173 cites W2334028018 @default.
- W4353029173 cites W2338318698 @default.
- W4353029173 cites W2562319768 @default.
- W4353029173 cites W2604243156 @default.
- W4353029173 cites W2766296277 @default.
- W4353029173 cites W2768536520 @default.
- W4353029173 cites W2806857802 @default.
- W4353029173 cites W2897701541 @default.
- W4353029173 cites W2899434936 @default.
- W4353029173 cites W2936503027 @default.
- W4353029173 cites W2954506104 @default.
- W4353029173 cites W2963306805 @default.
- W4353029173 cites W2978592520 @default.
- W4353029173 cites W2990580840 @default.
- W4353029173 cites W3026745704 @default.
- W4353029173 cites W3082059448 @default.
- W4353029173 cites W3087938565 @default.
- W4353029173 cites W3105384985 @default.
- W4353029173 cites W3120644841 @default.
- W4353029173 cites W3126752450 @default.
- W4353029173 cites W3128484727 @default.
- W4353029173 cites W3166991320 @default.
- W4353029173 cites W3174740339 @default.
- W4353029173 cites W3193870278 @default.
- W4353029173 cites W3200552577 @default.
- W4353029173 cites W4200465265 @default.
- W4353029173 cites W4205726435 @default.
- W4353029173 cites W4214519989 @default.
- W4353029173 cites W4242300521 @default.
- W4353029173 cites W4294691622 @default.
- W4353029173 doi "https://doi.org/10.1186/s40537-023-00715-6" @default.
- W4353029173 hasPublicationYear "2023" @default.
- W4353029173 type Work @default.
- W4353029173 citedByCount "2" @default.
- W4353029173 countsByYear W43530291732023 @default.
- W4353029173 crossrefType "journal-article" @default.
- W4353029173 hasAuthorship W4353029173A5007810885 @default.
- W4353029173 hasAuthorship W4353029173A5062314122 @default.
- W4353029173 hasAuthorship W4353029173A5083107003 @default.
- W4353029173 hasBestOaLocation W43530291731 @default.
- W4353029173 hasConcept C106131492 @default.
- W4353029173 hasConcept C108583219 @default.
- W4353029173 hasConcept C119857082 @default.
- W4353029173 hasConcept C124101348 @default.
- W4353029173 hasConcept C140779682 @default.
- W4353029173 hasConcept C154945302 @default.
- W4353029173 hasConcept C167966045 @default.
- W4353029173 hasConcept C2777212361 @default.
- W4353029173 hasConcept C2988773926 @default.
- W4353029173 hasConcept C31972630 @default.
- W4353029173 hasConcept C37736160 @default.
- W4353029173 hasConcept C39890363 @default.
- W4353029173 hasConcept C41008148 @default.
- W4353029173 hasConcept C75684735 @default.
- W4353029173 hasConceptScore W4353029173C106131492 @default.
- W4353029173 hasConceptScore W4353029173C108583219 @default.
- W4353029173 hasConceptScore W4353029173C119857082 @default.
- W4353029173 hasConceptScore W4353029173C124101348 @default.
- W4353029173 hasConceptScore W4353029173C140779682 @default.
- W4353029173 hasConceptScore W4353029173C154945302 @default.
- W4353029173 hasConceptScore W4353029173C167966045 @default.
- W4353029173 hasConceptScore W4353029173C2777212361 @default.
- W4353029173 hasConceptScore W4353029173C2988773926 @default.
- W4353029173 hasConceptScore W4353029173C31972630 @default.
- W4353029173 hasConceptScore W4353029173C37736160 @default.
- W4353029173 hasConceptScore W4353029173C39890363 @default.
- W4353029173 hasConceptScore W4353029173C41008148 @default.
- W4353029173 hasConceptScore W4353029173C75684735 @default.
- W4353029173 hasIssue "1" @default.
- W4353029173 hasLocation W43530291731 @default.
- W4353029173 hasOpenAccess W4353029173 @default.
- W4353029173 hasPrimaryLocation W43530291731 @default.
- W4353029173 hasRelatedWork W2585630030 @default.
- W4353029173 hasRelatedWork W2883697671 @default.
- W4353029173 hasRelatedWork W2901368259 @default.
- W4353029173 hasRelatedWork W2951578466 @default.
- W4353029173 hasRelatedWork W2961751791 @default.
- W4353029173 hasRelatedWork W2963865839 @default.
- W4353029173 hasRelatedWork W3156291593 @default.
- W4353029173 hasRelatedWork W3193917007 @default.