Matches in SemOpenAlex for { <https://semopenalex.org/work/W4353043886> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4353043886 abstract "Abstract Purpose This study aims to establish the best prediction model of lymph node metastasis (LNM) in patients with intermediate and high-risk prostate cancer (PCa) through machine learning (ML), and provide the guideline of accurate clinical diagnosis and precise treatment for clinicals. Methods A total of 24,470 patients with intermediate and high-risk PCa were included in this study. Multivariate logistic regression model was used to screen the independent risk factors of LNM. At the same time, six algorithms, namely, random forest (RF), naive bayesian classifier (NBC), xgboost (XGB), gradient boosting machine (GBM), logistic regression (LR) and decision tree (DT) are used to establish risk prediction models. Based on the best prediction performance of ML algorithm, a prediction model is established, and the performance of the model is evaluated from three aspects: area under curve (AUC), sensitivity and specificity. Results In multivariate logistic regression analysis, T stage, PSA, Gleason score and bone metastasis were independent predictors of LNM in patients with intermediate and high-risk PCa. By comprehensively comparing the prediction model performance of training set and test set, GBM model has the best prediction performance (F1 score = 0.838, AUROC = 0.804). Finally, we developed a preliminary calculator model that can quickly and accurately calculate the regional LNM in patients with intermediate and high-risk PCa. Conclusion T stage, PSA, Gleason and bone metastasis were independent risk factors for predicting LNM in patients with intermediate and high-risk PCa. The prediction model established in this study performs well, however, the GBM model is the best one." @default.
- W4353043886 created "2023-03-23" @default.
- W4353043886 creator A5026977205 @default.
- W4353043886 creator A5041421534 @default.
- W4353043886 creator A5044548734 @default.
- W4353043886 creator A5074365145 @default.
- W4353043886 creator A5076866788 @default.
- W4353043886 creator A5082937320 @default.
- W4353043886 date "2023-03-22" @default.
- W4353043886 modified "2023-10-18" @default.
- W4353043886 title "Application of machine learning algorithm in prediction of lymph node metastasis in patients with intermediate and high-risk prostate cancer" @default.
- W4353043886 cites W1977875850 @default.
- W4353043886 cites W2074621482 @default.
- W4353043886 cites W2091083791 @default.
- W4353043886 cites W2128532879 @default.
- W4353043886 cites W2158204669 @default.
- W4353043886 cites W2234202104 @default.
- W4353043886 cites W2406375637 @default.
- W4353043886 cites W2511949746 @default.
- W4353043886 cites W2782993602 @default.
- W4353043886 cites W2807764478 @default.
- W4353043886 cites W2883218190 @default.
- W4353043886 cites W2901194350 @default.
- W4353043886 cites W2912411326 @default.
- W4353043886 cites W2925404235 @default.
- W4353043886 cites W2973010805 @default.
- W4353043886 cites W2973032093 @default.
- W4353043886 cites W3029554474 @default.
- W4353043886 cites W3112599791 @default.
- W4353043886 cites W3134004666 @default.
- W4353043886 cites W3134553072 @default.
- W4353043886 cites W3165604397 @default.
- W4353043886 cites W3174257579 @default.
- W4353043886 cites W4206335918 @default.
- W4353043886 cites W4224269260 @default.
- W4353043886 cites W4225852028 @default.
- W4353043886 doi "https://doi.org/10.21203/rs.3.rs-2701508/v1" @default.
- W4353043886 hasPublicationYear "2023" @default.
- W4353043886 type Work @default.
- W4353043886 citedByCount "0" @default.
- W4353043886 crossrefType "posted-content" @default.
- W4353043886 hasAuthorship W4353043886A5026977205 @default.
- W4353043886 hasAuthorship W4353043886A5041421534 @default.
- W4353043886 hasAuthorship W4353043886A5044548734 @default.
- W4353043886 hasAuthorship W4353043886A5074365145 @default.
- W4353043886 hasAuthorship W4353043886A5076866788 @default.
- W4353043886 hasAuthorship W4353043886A5082937320 @default.
- W4353043886 hasBestOaLocation W43530438861 @default.
- W4353043886 hasConcept C11413529 @default.
- W4353043886 hasConcept C119857082 @default.
- W4353043886 hasConcept C121608353 @default.
- W4353043886 hasConcept C12267149 @default.
- W4353043886 hasConcept C126322002 @default.
- W4353043886 hasConcept C143998085 @default.
- W4353043886 hasConcept C151956035 @default.
- W4353043886 hasConcept C154945302 @default.
- W4353043886 hasConcept C161584116 @default.
- W4353043886 hasConcept C169258074 @default.
- W4353043886 hasConcept C169903167 @default.
- W4353043886 hasConcept C2780192828 @default.
- W4353043886 hasConcept C34626388 @default.
- W4353043886 hasConcept C41008148 @default.
- W4353043886 hasConcept C52001869 @default.
- W4353043886 hasConcept C58471807 @default.
- W4353043886 hasConcept C71924100 @default.
- W4353043886 hasConcept C84525736 @default.
- W4353043886 hasConceptScore W4353043886C11413529 @default.
- W4353043886 hasConceptScore W4353043886C119857082 @default.
- W4353043886 hasConceptScore W4353043886C121608353 @default.
- W4353043886 hasConceptScore W4353043886C12267149 @default.
- W4353043886 hasConceptScore W4353043886C126322002 @default.
- W4353043886 hasConceptScore W4353043886C143998085 @default.
- W4353043886 hasConceptScore W4353043886C151956035 @default.
- W4353043886 hasConceptScore W4353043886C154945302 @default.
- W4353043886 hasConceptScore W4353043886C161584116 @default.
- W4353043886 hasConceptScore W4353043886C169258074 @default.
- W4353043886 hasConceptScore W4353043886C169903167 @default.
- W4353043886 hasConceptScore W4353043886C2780192828 @default.
- W4353043886 hasConceptScore W4353043886C34626388 @default.
- W4353043886 hasConceptScore W4353043886C41008148 @default.
- W4353043886 hasConceptScore W4353043886C52001869 @default.
- W4353043886 hasConceptScore W4353043886C58471807 @default.
- W4353043886 hasConceptScore W4353043886C71924100 @default.
- W4353043886 hasConceptScore W4353043886C84525736 @default.
- W4353043886 hasLocation W43530438861 @default.
- W4353043886 hasOpenAccess W4353043886 @default.
- W4353043886 hasPrimaryLocation W43530438861 @default.
- W4353043886 hasRelatedWork W2780266336 @default.
- W4353043886 hasRelatedWork W2970562883 @default.
- W4353043886 hasRelatedWork W3036529732 @default.
- W4353043886 hasRelatedWork W3154045278 @default.
- W4353043886 hasRelatedWork W3210764983 @default.
- W4353043886 hasRelatedWork W4285162676 @default.
- W4353043886 hasRelatedWork W4367335949 @default.
- W4353043886 hasRelatedWork W4367336074 @default.
- W4353043886 hasRelatedWork W4379620016 @default.
- W4353043886 hasRelatedWork W4382052559 @default.
- W4353043886 isParatext "false" @default.
- W4353043886 isRetracted "false" @default.
- W4353043886 workType "article" @default.