Matches in SemOpenAlex for { <https://semopenalex.org/work/W4353046642> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4353046642 abstract "The high programmability provided by Software Defined Networking (SDN) paradigm facilitated the integration of Machine Learning (ML) methods to design a new family of network management schemes. Among them, we can cite self-driving networks, where ML is used to analyze data and define strategies that are then translated into network configurations by the SDN controllers, making the networks autonomous and capable of auto-scaling decisions based on the network’s needs. Despite their attractiveness, the centralized design of the majority of proposed solutions cannot keep up with the increasing size of the network. To this end, this paper investigates the use of a multi-agent reinforcement learning (MARL) model for auto-scaling decisions in an SDN environment. In particular, we study two possible alternatives for distributing operations: a collaborative one, where controllers share the same observations, and an individual one, where controllers make decisions according to their own logic and share only some basic information, such as the network topology. After an experimental campaign performed both on Mininet and GENI, results showed that both approaches can guarantee high throughput while minimizing the set of active resources." @default.
- W4353046642 created "2023-03-23" @default.
- W4353046642 creator A5010269472 @default.
- W4353046642 creator A5011246061 @default.
- W4353046642 creator A5033977160 @default.
- W4353046642 creator A5055238253 @default.
- W4353046642 creator A5089401120 @default.
- W4353046642 date "2023-03-06" @default.
- W4353046642 modified "2023-10-16" @default.
- W4353046642 title "A Collaborative and Distributed Learning-Based Solution to Autonomously Plan Computer Networks" @default.
- W4353046642 cites W2074616737 @default.
- W4353046642 cites W2111281854 @default.
- W4353046642 cites W2947327813 @default.
- W4353046642 cites W2947829929 @default.
- W4353046642 cites W2963222872 @default.
- W4353046642 cites W3016165051 @default.
- W4353046642 cites W3024450730 @default.
- W4353046642 cites W3046429719 @default.
- W4353046642 cites W3103060003 @default.
- W4353046642 cites W3109370623 @default.
- W4353046642 cites W3133205111 @default.
- W4353046642 cites W3191167321 @default.
- W4353046642 doi "https://doi.org/10.1109/icin56760.2023.10073505" @default.
- W4353046642 hasPublicationYear "2023" @default.
- W4353046642 type Work @default.
- W4353046642 citedByCount "0" @default.
- W4353046642 crossrefType "proceedings-article" @default.
- W4353046642 hasAuthorship W4353046642A5010269472 @default.
- W4353046642 hasAuthorship W4353046642A5011246061 @default.
- W4353046642 hasAuthorship W4353046642A5033977160 @default.
- W4353046642 hasAuthorship W4353046642A5055238253 @default.
- W4353046642 hasAuthorship W4353046642A5089401120 @default.
- W4353046642 hasConcept C102665078 @default.
- W4353046642 hasConcept C120314980 @default.
- W4353046642 hasConcept C154945302 @default.
- W4353046642 hasConcept C157764524 @default.
- W4353046642 hasConcept C166957645 @default.
- W4353046642 hasConcept C177264268 @default.
- W4353046642 hasConcept C199360897 @default.
- W4353046642 hasConcept C199845137 @default.
- W4353046642 hasConcept C2776505523 @default.
- W4353046642 hasConcept C2777904410 @default.
- W4353046642 hasConcept C31258907 @default.
- W4353046642 hasConcept C41008148 @default.
- W4353046642 hasConcept C555944384 @default.
- W4353046642 hasConcept C76155785 @default.
- W4353046642 hasConcept C77270119 @default.
- W4353046642 hasConcept C95457728 @default.
- W4353046642 hasConcept C97541855 @default.
- W4353046642 hasConceptScore W4353046642C102665078 @default.
- W4353046642 hasConceptScore W4353046642C120314980 @default.
- W4353046642 hasConceptScore W4353046642C154945302 @default.
- W4353046642 hasConceptScore W4353046642C157764524 @default.
- W4353046642 hasConceptScore W4353046642C166957645 @default.
- W4353046642 hasConceptScore W4353046642C177264268 @default.
- W4353046642 hasConceptScore W4353046642C199360897 @default.
- W4353046642 hasConceptScore W4353046642C199845137 @default.
- W4353046642 hasConceptScore W4353046642C2776505523 @default.
- W4353046642 hasConceptScore W4353046642C2777904410 @default.
- W4353046642 hasConceptScore W4353046642C31258907 @default.
- W4353046642 hasConceptScore W4353046642C41008148 @default.
- W4353046642 hasConceptScore W4353046642C555944384 @default.
- W4353046642 hasConceptScore W4353046642C76155785 @default.
- W4353046642 hasConceptScore W4353046642C77270119 @default.
- W4353046642 hasConceptScore W4353046642C95457728 @default.
- W4353046642 hasConceptScore W4353046642C97541855 @default.
- W4353046642 hasLocation W43530466421 @default.
- W4353046642 hasOpenAccess W4353046642 @default.
- W4353046642 hasPrimaryLocation W43530466421 @default.
- W4353046642 hasRelatedWork W2052424504 @default.
- W4353046642 hasRelatedWork W2064551914 @default.
- W4353046642 hasRelatedWork W2151709073 @default.
- W4353046642 hasRelatedWork W2241376366 @default.
- W4353046642 hasRelatedWork W2675958756 @default.
- W4353046642 hasRelatedWork W2949666640 @default.
- W4353046642 hasRelatedWork W4200566711 @default.
- W4353046642 hasRelatedWork W4281686974 @default.
- W4353046642 hasRelatedWork W4313054100 @default.
- W4353046642 hasRelatedWork W55330191 @default.
- W4353046642 isParatext "false" @default.
- W4353046642 isRetracted "false" @default.
- W4353046642 workType "article" @default.