Matches in SemOpenAlex for { <https://semopenalex.org/work/W4353047536> ?p ?o ?g. }
- W4353047536 endingPage "103532" @default.
- W4353047536 startingPage "103532" @default.
- W4353047536 abstract "Surface-enhanced Raman spectroscopy (SERS) is an efficient technique which has been used for the analysis of filtrate portions of serum samples of Hepatitis B (HBV) and Hepatitis C (HCV) virus. The main reason for this study is to differentiate and compare HBV and HCV serum samples for disease diagnosis through SERS. Hepatitis B and hepatitis C disease biomarkers are more predictable in their centrifuged form as compared in their uncentrifuged form. For differentiation of SERS spectral data sets of hepatitis B, hepatitis C and healthy person principal component analysis (PCA) proved to be a helpful. Centrifugally filtered serum samples of hepatitis B and hepatitis C are clearly differentiated from centrifugally filtered serum samples of healthy individuals by using partial least square discriminant analysis (PLS-DA). Serum sample of HBV, HCV and healthy patients were centrifugally filtered to separate filtrate portion for studying biochemical changes in serum sample. The SERS of these samples is performed using silver nanoparticles as substrates to identify specific spectral features of both viral diseases which can be used for the diagnosis and differentiation of these diseases. The purpose of centrifugal filtration of the serum samples of HBV and HCV positive and control samples by using filter membranes of 50 KDa size is to eliminate the proteins bigger than 50 KDa so that their contribution in the SERS spectrum is removed and disease related smaller proteins may be observed. Principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) are statistical tools which were used for the further validation of SERS. HBV and HCV centrifugally filtered serum sample were compared and biomarkers including (uracil, phenylalanine, methionine, adenine, phosphodiester, proline, tyrosine, tryptophan, amino acid, thymine, fatty acid, nucleic acid, triglyceride, guanine and hydroxyproline) were identified through PCA and PLS-DA. Principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) were used as a multivariate data analysis tool for the diagnosis of the characteristic SERS spectral features associated with both types of viral diseases. For the classification and differentiation of centrifugally filtered HBV, HCV, and control serum samples, Principal component analysis is found helpful. Moreover, PLS-DA can classify these two distinct sets of SERS spectral data with 0.90 percent specificity, 0.85 percent precision, and 0.83 percent accuracy. Surface enhanced Raman spectroscopy along with chemometric analysis like PCA and PLS-DA have been successfully differentiated HBV and HCV and healthy individuals’ serum samples." @default.
- W4353047536 created "2023-03-23" @default.
- W4353047536 creator A5005407827 @default.
- W4353047536 creator A5013428072 @default.
- W4353047536 creator A5026209702 @default.
- W4353047536 creator A5026375326 @default.
- W4353047536 creator A5034864169 @default.
- W4353047536 creator A5043523106 @default.
- W4353047536 creator A5055294975 @default.
- W4353047536 creator A5060659437 @default.
- W4353047536 creator A5078128587 @default.
- W4353047536 creator A5079891495 @default.
- W4353047536 creator A5084565060 @default.
- W4353047536 creator A5085587990 @default.
- W4353047536 creator A5089007210 @default.
- W4353047536 date "2023-06-01" @default.
- W4353047536 modified "2023-09-25" @default.
- W4353047536 title "Comparison of surface-enhanced Raman spectral data sets of filtrate portions of serum samples of hepatitis B and Hepatitis C infected patients obtained by centrifugal filtration" @default.
- W4353047536 cites W1817033456 @default.
- W4353047536 cites W1970710602 @default.
- W4353047536 cites W1973113332 @default.
- W4353047536 cites W1977182656 @default.
- W4353047536 cites W1988280812 @default.
- W4353047536 cites W1996774142 @default.
- W4353047536 cites W1997218127 @default.
- W4353047536 cites W2003716475 @default.
- W4353047536 cites W2010265091 @default.
- W4353047536 cites W2013730096 @default.
- W4353047536 cites W2021140160 @default.
- W4353047536 cites W2024752079 @default.
- W4353047536 cites W2027729207 @default.
- W4353047536 cites W2030009603 @default.
- W4353047536 cites W2036284823 @default.
- W4353047536 cites W2038707973 @default.
- W4353047536 cites W2041379055 @default.
- W4353047536 cites W2068837962 @default.
- W4353047536 cites W2081184437 @default.
- W4353047536 cites W2093496383 @default.
- W4353047536 cites W2096974907 @default.
- W4353047536 cites W2097358067 @default.
- W4353047536 cites W2124569930 @default.
- W4353047536 cites W2126893537 @default.
- W4353047536 cites W2134285663 @default.
- W4353047536 cites W2160425277 @default.
- W4353047536 cites W2167084755 @default.
- W4353047536 cites W2187134310 @default.
- W4353047536 cites W2471754766 @default.
- W4353047536 cites W2499437291 @default.
- W4353047536 cites W2578013986 @default.
- W4353047536 cites W2597777140 @default.
- W4353047536 cites W2797129930 @default.
- W4353047536 cites W2807326971 @default.
- W4353047536 cites W2946871619 @default.
- W4353047536 cites W2948458100 @default.
- W4353047536 cites W3044777619 @default.
- W4353047536 cites W3090638597 @default.
- W4353047536 cites W3114587231 @default.
- W4353047536 cites W3135302424 @default.
- W4353047536 cites W3137677285 @default.
- W4353047536 cites W3158119474 @default.
- W4353047536 cites W3158795676 @default.
- W4353047536 cites W3164406868 @default.
- W4353047536 cites W3172488023 @default.
- W4353047536 cites W3178470271 @default.
- W4353047536 cites W3184725941 @default.
- W4353047536 cites W4220941380 @default.
- W4353047536 cites W4238768614 @default.
- W4353047536 cites W4252409517 @default.
- W4353047536 cites W4256078402 @default.
- W4353047536 cites W4281847764 @default.
- W4353047536 cites W4302424851 @default.
- W4353047536 cites W4308655299 @default.
- W4353047536 cites W4319304783 @default.
- W4353047536 doi "https://doi.org/10.1016/j.pdpdt.2023.103532" @default.
- W4353047536 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36963645" @default.
- W4353047536 hasPublicationYear "2023" @default.
- W4353047536 type Work @default.
- W4353047536 citedByCount "1" @default.
- W4353047536 crossrefType "journal-article" @default.
- W4353047536 hasAuthorship W4353047536A5005407827 @default.
- W4353047536 hasAuthorship W4353047536A5013428072 @default.
- W4353047536 hasAuthorship W4353047536A5026209702 @default.
- W4353047536 hasAuthorship W4353047536A5026375326 @default.
- W4353047536 hasAuthorship W4353047536A5034864169 @default.
- W4353047536 hasAuthorship W4353047536A5043523106 @default.
- W4353047536 hasAuthorship W4353047536A5055294975 @default.
- W4353047536 hasAuthorship W4353047536A5060659437 @default.
- W4353047536 hasAuthorship W4353047536A5078128587 @default.
- W4353047536 hasAuthorship W4353047536A5079891495 @default.
- W4353047536 hasAuthorship W4353047536A5084565060 @default.
- W4353047536 hasAuthorship W4353047536A5085587990 @default.
- W4353047536 hasAuthorship W4353047536A5089007210 @default.
- W4353047536 hasConcept C120665830 @default.
- W4353047536 hasConcept C121332964 @default.
- W4353047536 hasConcept C159047783 @default.
- W4353047536 hasConcept C169573571 @default.
- W4353047536 hasConcept C2522874641 @default.
- W4353047536 hasConcept C2776029263 @default.