Matches in SemOpenAlex for { <https://semopenalex.org/work/W4353048130> ?p ?o ?g. }
- W4353048130 endingPage "100258" @default.
- W4353048130 startingPage "100258" @default.
- W4353048130 abstract "Energy efficiency in the petrochemical industry is crucial in reducing energy consumption and environmental impact. An accurate energy efficiency model will provide valuable insight for supporting operational adjustment decisions. In practice, due to inconsistent sampling intervals in the petrochemical industry, the traditional approach for obtaining energy efficiency may be unreliable and difficult to handle these multirate data characteristics. Therefore, in this paper, a multi-channel convolutional neural network model integrating a model parameter-based transfer learning approach is proposed to improve the prediction of energy efficiency under inconsistent sampling intervals. The multi-channel structure aims to recognize a different pattern from the dataset by convolving the information along the time dimension. Concurrently, transfer learning allows the model to learn a new pattern of input after the model is fully trained. Finally, the performance for energy efficiency prediction and saving analysis is validated by applying it to the vinyl chloride monomer production case study. The result shows that the proposed model outperformed traditional models and typical convolutional neural network structures in terms of accuracy and reproducibility, with an r-square of 0.97. The utilization of transfer learning prevents a significant drop in performance and enhances adaptability in model learning on real-time energy tracking. Moreover, the energy gap analysis of the prediction result identified a significant energy-saving potential, which would decrease annual energy consumption by 7.25% on average and a 5,709-ton reduction in carbon dioxide emissions." @default.
- W4353048130 created "2023-03-23" @default.
- W4353048130 creator A5006929635 @default.
- W4353048130 creator A5013187093 @default.
- W4353048130 creator A5030073664 @default.
- W4353048130 creator A5031912580 @default.
- W4353048130 creator A5086296544 @default.
- W4353048130 date "2023-10-01" @default.
- W4353048130 modified "2023-10-05" @default.
- W4353048130 title "Energy efficiency and savings analysis with multirate sampling for petrochemical process using convolutional neural network-based transfer learning" @default.
- W4353048130 cites W2890920214 @default.
- W4353048130 cites W2905908075 @default.
- W4353048130 cites W2910879128 @default.
- W4353048130 cites W2972237280 @default.
- W4353048130 cites W3024009674 @default.
- W4353048130 cites W3034204716 @default.
- W4353048130 cites W3089352498 @default.
- W4353048130 cites W3110921677 @default.
- W4353048130 cites W3130277507 @default.
- W4353048130 cites W3134884047 @default.
- W4353048130 cites W3162118032 @default.
- W4353048130 cites W3165455002 @default.
- W4353048130 cites W3175492751 @default.
- W4353048130 cites W3183490588 @default.
- W4353048130 cites W3184208869 @default.
- W4353048130 cites W3185020631 @default.
- W4353048130 cites W3212993326 @default.
- W4353048130 cites W4200428272 @default.
- W4353048130 cites W4206696802 @default.
- W4353048130 cites W4213345686 @default.
- W4353048130 cites W4280503334 @default.
- W4353048130 cites W4280603055 @default.
- W4353048130 cites W4281491164 @default.
- W4353048130 cites W4281572064 @default.
- W4353048130 cites W4281687692 @default.
- W4353048130 cites W4281747828 @default.
- W4353048130 cites W4281876645 @default.
- W4353048130 cites W4285043289 @default.
- W4353048130 cites W4286250636 @default.
- W4353048130 cites W4292824450 @default.
- W4353048130 cites W4296902799 @default.
- W4353048130 cites W4307897928 @default.
- W4353048130 cites W4309879870 @default.
- W4353048130 cites W4310013156 @default.
- W4353048130 cites W4310837319 @default.
- W4353048130 cites W4311253040 @default.
- W4353048130 cites W4311968907 @default.
- W4353048130 cites W4313419153 @default.
- W4353048130 doi "https://doi.org/10.1016/j.egyai.2023.100258" @default.
- W4353048130 hasPublicationYear "2023" @default.
- W4353048130 type Work @default.
- W4353048130 citedByCount "1" @default.
- W4353048130 countsByYear W43530481302023 @default.
- W4353048130 crossrefType "journal-article" @default.
- W4353048130 hasAuthorship W4353048130A5006929635 @default.
- W4353048130 hasAuthorship W4353048130A5013187093 @default.
- W4353048130 hasAuthorship W4353048130A5030073664 @default.
- W4353048130 hasAuthorship W4353048130A5031912580 @default.
- W4353048130 hasAuthorship W4353048130A5086296544 @default.
- W4353048130 hasBestOaLocation W43530481301 @default.
- W4353048130 hasConcept C105795698 @default.
- W4353048130 hasConcept C111919701 @default.
- W4353048130 hasConcept C119599485 @default.
- W4353048130 hasConcept C119857082 @default.
- W4353048130 hasConcept C127413603 @default.
- W4353048130 hasConcept C140779682 @default.
- W4353048130 hasConcept C150899416 @default.
- W4353048130 hasConcept C154945302 @default.
- W4353048130 hasConcept C186370098 @default.
- W4353048130 hasConcept C2742236 @default.
- W4353048130 hasConcept C2780165032 @default.
- W4353048130 hasConcept C33923547 @default.
- W4353048130 hasConcept C41008148 @default.
- W4353048130 hasConcept C50644808 @default.
- W4353048130 hasConcept C76155785 @default.
- W4353048130 hasConcept C81363708 @default.
- W4353048130 hasConcept C94915269 @default.
- W4353048130 hasConcept C98045186 @default.
- W4353048130 hasConceptScore W4353048130C105795698 @default.
- W4353048130 hasConceptScore W4353048130C111919701 @default.
- W4353048130 hasConceptScore W4353048130C119599485 @default.
- W4353048130 hasConceptScore W4353048130C119857082 @default.
- W4353048130 hasConceptScore W4353048130C127413603 @default.
- W4353048130 hasConceptScore W4353048130C140779682 @default.
- W4353048130 hasConceptScore W4353048130C150899416 @default.
- W4353048130 hasConceptScore W4353048130C154945302 @default.
- W4353048130 hasConceptScore W4353048130C186370098 @default.
- W4353048130 hasConceptScore W4353048130C2742236 @default.
- W4353048130 hasConceptScore W4353048130C2780165032 @default.
- W4353048130 hasConceptScore W4353048130C33923547 @default.
- W4353048130 hasConceptScore W4353048130C41008148 @default.
- W4353048130 hasConceptScore W4353048130C50644808 @default.
- W4353048130 hasConceptScore W4353048130C76155785 @default.
- W4353048130 hasConceptScore W4353048130C81363708 @default.
- W4353048130 hasConceptScore W4353048130C94915269 @default.
- W4353048130 hasConceptScore W4353048130C98045186 @default.
- W4353048130 hasLocation W43530481301 @default.
- W4353048130 hasOpenAccess W4353048130 @default.