Matches in SemOpenAlex for { <https://semopenalex.org/work/W4353057115> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4353057115 endingPage "106166" @default.
- W4353057115 startingPage "106166" @default.
- W4353057115 abstract "In this paper, the applicability of machine learning models and techniques to the Markov–Dubins path planning problem have been explored. Machine learning techniques are already applied to several fields, which range from computer vision, to physics simulation, to item recommendation, to user profiling. This pervasiveness has led to marked improvements in the implementation and support for applying machine learning models, in particular for specialised use cases such as low-power devices, embedded hardware, and real-time applications. On the other hand, the Markov–Dubins path planning problem, which is central in robotic nonholonomic trajectory design, is already covered by established numerical and optimisation techniques. However, the benefits of applying machine learning approaches to this problem remain to be investigated. In particular, there is the need to research potential speed-ups or application domains that would be better solved by a machine learning approach compared to the traditional algorithmic approaches. In this study, we train a state-of-the-art machine learning model in a supervised setting on Markov–Dubins and use it in two different ways: to directly predict the solution, and to filter candidate solutions. Also, a comparison of the quality of these predictions with a state-of-the-art Markov–Dubins solver is made. The results obtained indicate that machine learning approaches are comparable to state-of-the-art solutions: our bare model, directly predicting the solution, appears to be 8.3 times faster than the current standard, sacrificing the accuracy, which amounts to a value close to 92%; the hybrid model that filters the solutions prior to finding the best candidate runs in times that are comparable to the classical solver (58 ms) and has over 98% accuracy. A further comparison with alternative solvers and techniques, such as Optimal Control, NonLinear Programming and Mixed Integer NonLinear Programming has been made, confirming the benefits of the machine learning approach over these, for which the computational times are in the range of seconds. This opens new avenues for interdisciplinary applications of machine learning to more general planning problems (e.g., the same problem in 3D), where the number of possible manoeuvres is large and the computation of each of them requires a considerable computational effort, which makes the brute force trial-and-error infeasible." @default.
- W4353057115 created "2023-03-23" @default.
- W4353057115 creator A5000093663 @default.
- W4353057115 creator A5005106817 @default.
- W4353057115 creator A5020053815 @default.
- W4353057115 creator A5023858838 @default.
- W4353057115 creator A5080554397 @default.
- W4353057115 date "2023-06-01" @default.
- W4353057115 modified "2023-10-06" @default.
- W4353057115 title "A new Markov–Dubins hybrid solver with learned decision trees" @default.
- W4353057115 cites W1554604621 @default.
- W4353057115 cites W1970071808 @default.
- W4353057115 cites W1971998222 @default.
- W4353057115 cites W1992026635 @default.
- W4353057115 cites W2014289307 @default.
- W4353057115 cites W2058786336 @default.
- W4353057115 cites W2079442994 @default.
- W4353057115 cites W2104367785 @default.
- W4353057115 cites W2113755254 @default.
- W4353057115 cites W2134638269 @default.
- W4353057115 cites W2148970883 @default.
- W4353057115 cites W2180065899 @default.
- W4353057115 cites W2313274380 @default.
- W4353057115 cites W2318061870 @default.
- W4353057115 cites W2421391607 @default.
- W4353057115 cites W2752444998 @default.
- W4353057115 cites W2793473523 @default.
- W4353057115 cites W2891243081 @default.
- W4353057115 cites W2902843745 @default.
- W4353057115 cites W2914986345 @default.
- W4353057115 cites W2962977210 @default.
- W4353057115 cites W2965872552 @default.
- W4353057115 cites W3006050411 @default.
- W4353057115 cites W3027330114 @default.
- W4353057115 cites W3046639050 @default.
- W4353057115 cites W3047616672 @default.
- W4353057115 cites W3094948551 @default.
- W4353057115 cites W3103341201 @default.
- W4353057115 cites W3134491489 @default.
- W4353057115 cites W3199958827 @default.
- W4353057115 cites W4205990435 @default.
- W4353057115 doi "https://doi.org/10.1016/j.engappai.2023.106166" @default.
- W4353057115 hasPublicationYear "2023" @default.
- W4353057115 type Work @default.
- W4353057115 citedByCount "0" @default.
- W4353057115 crossrefType "journal-article" @default.
- W4353057115 hasAuthorship W4353057115A5000093663 @default.
- W4353057115 hasAuthorship W4353057115A5005106817 @default.
- W4353057115 hasAuthorship W4353057115A5020053815 @default.
- W4353057115 hasAuthorship W4353057115A5023858838 @default.
- W4353057115 hasAuthorship W4353057115A5080554397 @default.
- W4353057115 hasBestOaLocation W43530571151 @default.
- W4353057115 hasConcept C105795698 @default.
- W4353057115 hasConcept C106189395 @default.
- W4353057115 hasConcept C11413529 @default.
- W4353057115 hasConcept C119857082 @default.
- W4353057115 hasConcept C126255220 @default.
- W4353057115 hasConcept C154945302 @default.
- W4353057115 hasConcept C159886148 @default.
- W4353057115 hasConcept C199360897 @default.
- W4353057115 hasConcept C2778770139 @default.
- W4353057115 hasConcept C33923547 @default.
- W4353057115 hasConcept C41008148 @default.
- W4353057115 hasConcept C81074085 @default.
- W4353057115 hasConcept C90509273 @default.
- W4353057115 hasConcept C98763669 @default.
- W4353057115 hasConceptScore W4353057115C105795698 @default.
- W4353057115 hasConceptScore W4353057115C106189395 @default.
- W4353057115 hasConceptScore W4353057115C11413529 @default.
- W4353057115 hasConceptScore W4353057115C119857082 @default.
- W4353057115 hasConceptScore W4353057115C126255220 @default.
- W4353057115 hasConceptScore W4353057115C154945302 @default.
- W4353057115 hasConceptScore W4353057115C159886148 @default.
- W4353057115 hasConceptScore W4353057115C199360897 @default.
- W4353057115 hasConceptScore W4353057115C2778770139 @default.
- W4353057115 hasConceptScore W4353057115C33923547 @default.
- W4353057115 hasConceptScore W4353057115C41008148 @default.
- W4353057115 hasConceptScore W4353057115C81074085 @default.
- W4353057115 hasConceptScore W4353057115C90509273 @default.
- W4353057115 hasConceptScore W4353057115C98763669 @default.
- W4353057115 hasFunder F4320325400 @default.
- W4353057115 hasLocation W43530571151 @default.
- W4353057115 hasOpenAccess W4353057115 @default.
- W4353057115 hasPrimaryLocation W43530571151 @default.
- W4353057115 hasRelatedWork W2026691440 @default.
- W4353057115 hasRelatedWork W2068961128 @default.
- W4353057115 hasRelatedWork W2104198943 @default.
- W4353057115 hasRelatedWork W2117282672 @default.
- W4353057115 hasRelatedWork W2128702080 @default.
- W4353057115 hasRelatedWork W2156992384 @default.
- W4353057115 hasRelatedWork W2161367706 @default.
- W4353057115 hasRelatedWork W3013781205 @default.
- W4353057115 hasRelatedWork W3090872367 @default.
- W4353057115 hasRelatedWork W3198596521 @default.
- W4353057115 hasVolume "122" @default.
- W4353057115 isParatext "false" @default.
- W4353057115 isRetracted "false" @default.
- W4353057115 workType "article" @default.