Matches in SemOpenAlex for { <https://semopenalex.org/work/W4353064712> ?p ?o ?g. }
- W4353064712 endingPage "738" @default.
- W4353064712 startingPage "738" @default.
- W4353064712 abstract "Laying hen activities in modern intensive housing systems can dramatically influence the policies needed for the optimal management of such systems. Intermittent monitoring of different behaviors during daytime cannot provide a good overview, since daily behaviors are not equally distributed over the day. This paper investigates the application of deep learning technology in the automatic recognition of laying hen behaviors equipped with body-worn inertial measurement unit (IMU) modules in poultry systems. Motivated by the human activity recognition literature, a sophisticated preprocessing method is tailored on the time-series data of IMU, transforming it into the form of so-called activity images to be recognized by the deep learning models. The diverse range of behaviors a laying hen can exhibit are categorized into three classes: low-, medium-, and high-intensity activities, and various recognition models are trained to recognize these behaviors in real-time. Several ablation studies are conducted to assess the efficacy and robustness of the developed models against variations and limitations common for an in situ practical implementation. Overall, the best trained model on the full-feature acquired data achieves a mean accuracy of almost 100%, where the whole process of inference by the model takes less than 30 milliseconds. The results suggest that the application of deep learning technology for activity recognition of individual hens has the potential to accurately aid successful management of modern poultry systems." @default.
- W4353064712 created "2023-03-23" @default.
- W4353064712 creator A5021196353 @default.
- W4353064712 creator A5042101746 @default.
- W4353064712 creator A5051025933 @default.
- W4353064712 creator A5064041436 @default.
- W4353064712 date "2023-03-22" @default.
- W4353064712 modified "2023-10-09" @default.
- W4353064712 title "Deep Learning for Laying Hen Activity Recognition Using Wearable Sensors" @default.
- W4353064712 cites W1759831020 @default.
- W4353064712 cites W1967387408 @default.
- W4353064712 cites W1971107683 @default.
- W4353064712 cites W2000679685 @default.
- W4353064712 cites W2002951826 @default.
- W4353064712 cites W2033280732 @default.
- W4353064712 cites W2050365465 @default.
- W4353064712 cites W2093582996 @default.
- W4353064712 cites W2099473616 @default.
- W4353064712 cites W2110784857 @default.
- W4353064712 cites W2112796928 @default.
- W4353064712 cites W2116410444 @default.
- W4353064712 cites W2120624796 @default.
- W4353064712 cites W2144521032 @default.
- W4353064712 cites W2162371166 @default.
- W4353064712 cites W2162989219 @default.
- W4353064712 cites W2167985878 @default.
- W4353064712 cites W2194775991 @default.
- W4353064712 cites W2533891655 @default.
- W4353064712 cites W2594265094 @default.
- W4353064712 cites W2756827895 @default.
- W4353064712 cites W2774579163 @default.
- W4353064712 cites W2887191090 @default.
- W4353064712 cites W2919115771 @default.
- W4353064712 cites W2977793032 @default.
- W4353064712 cites W2997654184 @default.
- W4353064712 cites W3007066689 @default.
- W4353064712 cites W3023384820 @default.
- W4353064712 cites W3133837447 @default.
- W4353064712 cites W4200033856 @default.
- W4353064712 cites W4210623271 @default.
- W4353064712 cites W4214486506 @default.
- W4353064712 doi "https://doi.org/10.3390/agriculture13030738" @default.
- W4353064712 hasPublicationYear "2023" @default.
- W4353064712 type Work @default.
- W4353064712 citedByCount "2" @default.
- W4353064712 countsByYear W43530647122023 @default.
- W4353064712 crossrefType "journal-article" @default.
- W4353064712 hasAuthorship W4353064712A5021196353 @default.
- W4353064712 hasAuthorship W4353064712A5042101746 @default.
- W4353064712 hasAuthorship W4353064712A5051025933 @default.
- W4353064712 hasAuthorship W4353064712A5064041436 @default.
- W4353064712 hasBestOaLocation W43530647121 @default.
- W4353064712 hasConcept C104317684 @default.
- W4353064712 hasConcept C10551718 @default.
- W4353064712 hasConcept C107457646 @default.
- W4353064712 hasConcept C108583219 @default.
- W4353064712 hasConcept C119857082 @default.
- W4353064712 hasConcept C121332964 @default.
- W4353064712 hasConcept C121687571 @default.
- W4353064712 hasConcept C149635348 @default.
- W4353064712 hasConcept C150594956 @default.
- W4353064712 hasConcept C151233233 @default.
- W4353064712 hasConcept C154945302 @default.
- W4353064712 hasConcept C185592680 @default.
- W4353064712 hasConcept C2776214188 @default.
- W4353064712 hasConcept C34736171 @default.
- W4353064712 hasConcept C41008148 @default.
- W4353064712 hasConcept C54290928 @default.
- W4353064712 hasConcept C55493867 @default.
- W4353064712 hasConcept C62520636 @default.
- W4353064712 hasConcept C63479239 @default.
- W4353064712 hasConcept C79061980 @default.
- W4353064712 hasConceptScore W4353064712C104317684 @default.
- W4353064712 hasConceptScore W4353064712C10551718 @default.
- W4353064712 hasConceptScore W4353064712C107457646 @default.
- W4353064712 hasConceptScore W4353064712C108583219 @default.
- W4353064712 hasConceptScore W4353064712C119857082 @default.
- W4353064712 hasConceptScore W4353064712C121332964 @default.
- W4353064712 hasConceptScore W4353064712C121687571 @default.
- W4353064712 hasConceptScore W4353064712C149635348 @default.
- W4353064712 hasConceptScore W4353064712C150594956 @default.
- W4353064712 hasConceptScore W4353064712C151233233 @default.
- W4353064712 hasConceptScore W4353064712C154945302 @default.
- W4353064712 hasConceptScore W4353064712C185592680 @default.
- W4353064712 hasConceptScore W4353064712C2776214188 @default.
- W4353064712 hasConceptScore W4353064712C34736171 @default.
- W4353064712 hasConceptScore W4353064712C41008148 @default.
- W4353064712 hasConceptScore W4353064712C54290928 @default.
- W4353064712 hasConceptScore W4353064712C55493867 @default.
- W4353064712 hasConceptScore W4353064712C62520636 @default.
- W4353064712 hasConceptScore W4353064712C63479239 @default.
- W4353064712 hasConceptScore W4353064712C79061980 @default.
- W4353064712 hasIssue "3" @default.
- W4353064712 hasLocation W43530647121 @default.
- W4353064712 hasOpenAccess W4353064712 @default.
- W4353064712 hasPrimaryLocation W43530647121 @default.
- W4353064712 hasRelatedWork W2907173324 @default.
- W4353064712 hasRelatedWork W3024238725 @default.