Matches in SemOpenAlex for { <https://semopenalex.org/work/W4353064768> ?p ?o ?g. }
- W4353064768 endingPage "73" @default.
- W4353064768 startingPage "73" @default.
- W4353064768 abstract "This study examines the impact of upstream structures on the bulk drag coefficient of vegetation through experimental means, which has not been previously conducted. An embankment model was placed upstream of the vegetation, both with and without a moat/depression. The results showed that the presence of an upstream structure reduced the bulk drag coefficient of vegetation as the structure shared the drag. When only the embankment was placed upstream, a maximum decrease of 11% in the bulk drag coefficient was observed. However, when both the embankment and moat models were placed upstream, a 20% decrease in the bulk drag coefficient was observed. Regression models and artificial neural network (ANN) models were developed to predict the bulk drag coefficient based on the variables affecting it. Five ANN models with different training functions were compared to find the best possible training function, with performance indicators such as coefficient of determination (R2), root mean square error (RMSE), Nash–Sutcliffe efficiency (NSE), sum of square error (SSE), mean absolute error (MAE), and Taylor’s diagrams used to evaluate the model performance. The ANN model with nine neurons in each hidden layer performed the best, achieving the highest R2 and NSE values and the lowest RMSE, SSE, and MAE values. Finally, the comparison between the regression model and the ANN model showed that the best ANN model outperformed the regression models, achieving R2 values of 0.99 and 0.98 for the training and validation subsets, respectively." @default.
- W4353064768 created "2023-03-23" @default.
- W4353064768 creator A5012212743 @default.
- W4353064768 creator A5025482102 @default.
- W4353064768 creator A5031304131 @default.
- W4353064768 creator A5035946152 @default.
- W4353064768 creator A5040633805 @default.
- W4353064768 creator A5080050611 @default.
- W4353064768 creator A5080703642 @default.
- W4353064768 date "2023-03-22" @default.
- W4353064768 modified "2023-09-25" @default.
- W4353064768 title "Experimental and Artificial Neural Network (ANN) Modeling of Instream Vegetation Hydrodynamic Resistance" @default.
- W4353064768 cites W1552304736 @default.
- W4353064768 cites W1893680646 @default.
- W4353064768 cites W1978153689 @default.
- W4353064768 cites W1980781594 @default.
- W4353064768 cites W1982886677 @default.
- W4353064768 cites W1997052296 @default.
- W4353064768 cites W2013052398 @default.
- W4353064768 cites W2024256927 @default.
- W4353064768 cites W2024413977 @default.
- W4353064768 cites W2031249827 @default.
- W4353064768 cites W2047940566 @default.
- W4353064768 cites W2058142132 @default.
- W4353064768 cites W2072697915 @default.
- W4353064768 cites W2076531285 @default.
- W4353064768 cites W2077021563 @default.
- W4353064768 cites W2085469184 @default.
- W4353064768 cites W2089715810 @default.
- W4353064768 cites W2091934631 @default.
- W4353064768 cites W2092966701 @default.
- W4353064768 cites W2098368870 @default.
- W4353064768 cites W2106004183 @default.
- W4353064768 cites W2118355240 @default.
- W4353064768 cites W2126459061 @default.
- W4353064768 cites W2147715010 @default.
- W4353064768 cites W2148600414 @default.
- W4353064768 cites W2152236704 @default.
- W4353064768 cites W2152873059 @default.
- W4353064768 cites W2158818605 @default.
- W4353064768 cites W2162136980 @default.
- W4353064768 cites W2366997190 @default.
- W4353064768 cites W2514901441 @default.
- W4353064768 cites W2560538947 @default.
- W4353064768 cites W2616430149 @default.
- W4353064768 cites W2728561299 @default.
- W4353064768 cites W2791646042 @default.
- W4353064768 cites W2791706339 @default.
- W4353064768 cites W2793872731 @default.
- W4353064768 cites W2795396399 @default.
- W4353064768 cites W2811165060 @default.
- W4353064768 cites W2894006050 @default.
- W4353064768 cites W2898791292 @default.
- W4353064768 cites W2908512302 @default.
- W4353064768 cites W2913308953 @default.
- W4353064768 cites W2925055100 @default.
- W4353064768 cites W2947752800 @default.
- W4353064768 cites W2973641297 @default.
- W4353064768 cites W3004565078 @default.
- W4353064768 cites W3041737480 @default.
- W4353064768 cites W3049677614 @default.
- W4353064768 cites W3201627727 @default.
- W4353064768 cites W3205059669 @default.
- W4353064768 cites W4235764071 @default.
- W4353064768 cites W4281634376 @default.
- W4353064768 doi "https://doi.org/10.3390/hydrology10030073" @default.
- W4353064768 hasPublicationYear "2023" @default.
- W4353064768 type Work @default.
- W4353064768 citedByCount "0" @default.
- W4353064768 crossrefType "journal-article" @default.
- W4353064768 hasAuthorship W4353064768A5012212743 @default.
- W4353064768 hasAuthorship W4353064768A5025482102 @default.
- W4353064768 hasAuthorship W4353064768A5031304131 @default.
- W4353064768 hasAuthorship W4353064768A5035946152 @default.
- W4353064768 hasAuthorship W4353064768A5040633805 @default.
- W4353064768 hasAuthorship W4353064768A5080050611 @default.
- W4353064768 hasAuthorship W4353064768A5080703642 @default.
- W4353064768 hasBestOaLocation W43530647681 @default.
- W4353064768 hasConcept C105795698 @default.
- W4353064768 hasConcept C121332964 @default.
- W4353064768 hasConcept C127313418 @default.
- W4353064768 hasConcept C128990827 @default.
- W4353064768 hasConcept C139945424 @default.
- W4353064768 hasConcept C142724271 @default.
- W4353064768 hasConcept C152877465 @default.
- W4353064768 hasConcept C154945302 @default.
- W4353064768 hasConcept C159390177 @default.
- W4353064768 hasConcept C187320778 @default.
- W4353064768 hasConcept C2776133958 @default.
- W4353064768 hasConcept C2780092901 @default.
- W4353064768 hasConcept C33923547 @default.
- W4353064768 hasConcept C39432304 @default.
- W4353064768 hasConcept C41008148 @default.
- W4353064768 hasConcept C50644808 @default.
- W4353064768 hasConcept C57879066 @default.
- W4353064768 hasConcept C71924100 @default.
- W4353064768 hasConcept C72117827 @default.
- W4353064768 hasConcept C72921944 @default.