Matches in SemOpenAlex for { <https://semopenalex.org/work/W4353067642> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4353067642 endingPage "5591" @default.
- W4353067642 startingPage "5591" @default.
- W4353067642 abstract "The most negative effects caused by earthquakes are the damage and collapse of buildings. Seismic building retrofitting and repair can effectively reduce the negative impact on post-earthquake buildings. The priority to repair the construction after being damaged by an earthquake is to perform an assessment of seismic buildings. The traditional damage assessment method is mainly based on visual inspection, which is highly subjective and has low efficiency. To improve the intelligence of damage assessments for post-earthquake buildings, this paper proposed an assessment method using CV (Computer Vision) and AR (Augmented Reality). Firstly, this paper proposed a fusion mechanism for the CV and AR of the assessment method. Secondly, the CNN (Convolutional Neural Network) algorithm and gray value theory are used to determine the damage information of post-earthquake buildings. Then, the damage assessment can be visually displayed according to the damage information. Finally, this paper used a damage assessment case of seismic-reinforced concrete frame beams to verify the feasibility and effectiveness of the proposed assessment method." @default.
- W4353067642 created "2023-03-23" @default.
- W4353067642 creator A5009814734 @default.
- W4353067642 creator A5021619658 @default.
- W4353067642 creator A5026874887 @default.
- W4353067642 creator A5034827883 @default.
- W4353067642 creator A5038658589 @default.
- W4353067642 date "2023-03-22" @default.
- W4353067642 modified "2023-09-29" @default.
- W4353067642 title "Intelligent Damage Assessment for Post-Earthquake Buildings Using Computer Vision and Augmented Reality" @default.
- W4353067642 cites W1976793263 @default.
- W4353067642 cites W1983693051 @default.
- W4353067642 cites W2027000042 @default.
- W4353067642 cites W2050298050 @default.
- W4353067642 cites W2084156309 @default.
- W4353067642 cites W2098289122 @default.
- W4353067642 cites W2128880484 @default.
- W4353067642 cites W2318100656 @default.
- W4353067642 cites W2598457882 @default.
- W4353067642 cites W2605310885 @default.
- W4353067642 cites W2736781912 @default.
- W4353067642 cites W2790671702 @default.
- W4353067642 cites W2931310555 @default.
- W4353067642 cites W3024156945 @default.
- W4353067642 cites W3035053225 @default.
- W4353067642 cites W3088387226 @default.
- W4353067642 cites W3098956184 @default.
- W4353067642 cites W3109754937 @default.
- W4353067642 cites W3112944626 @default.
- W4353067642 cites W3117175201 @default.
- W4353067642 cites W3124664719 @default.
- W4353067642 cites W3127302525 @default.
- W4353067642 cites W3164638646 @default.
- W4353067642 cites W3173521342 @default.
- W4353067642 cites W3174276372 @default.
- W4353067642 cites W3176188210 @default.
- W4353067642 cites W3176274633 @default.
- W4353067642 cites W3186248524 @default.
- W4353067642 cites W3196908521 @default.
- W4353067642 cites W3198409110 @default.
- W4353067642 cites W3212737115 @default.
- W4353067642 cites W3215314811 @default.
- W4353067642 cites W4210321168 @default.
- W4353067642 cites W4213294339 @default.
- W4353067642 cites W4225619930 @default.
- W4353067642 cites W4285384241 @default.
- W4353067642 cites W4309725146 @default.
- W4353067642 cites W4321488309 @default.
- W4353067642 doi "https://doi.org/10.3390/su15065591" @default.
- W4353067642 hasPublicationYear "2023" @default.
- W4353067642 type Work @default.
- W4353067642 citedByCount "1" @default.
- W4353067642 countsByYear W43530676422023 @default.
- W4353067642 crossrefType "journal-article" @default.
- W4353067642 hasAuthorship W4353067642A5009814734 @default.
- W4353067642 hasAuthorship W4353067642A5021619658 @default.
- W4353067642 hasAuthorship W4353067642A5026874887 @default.
- W4353067642 hasAuthorship W4353067642A5034827883 @default.
- W4353067642 hasAuthorship W4353067642A5038658589 @default.
- W4353067642 hasBestOaLocation W43530676421 @default.
- W4353067642 hasConcept C126042441 @default.
- W4353067642 hasConcept C127413603 @default.
- W4353067642 hasConcept C154945302 @default.
- W4353067642 hasConcept C2778368411 @default.
- W4353067642 hasConcept C41008148 @default.
- W4353067642 hasConcept C66938386 @default.
- W4353067642 hasConcept C76155785 @default.
- W4353067642 hasConcept C81363708 @default.
- W4353067642 hasConceptScore W4353067642C126042441 @default.
- W4353067642 hasConceptScore W4353067642C127413603 @default.
- W4353067642 hasConceptScore W4353067642C154945302 @default.
- W4353067642 hasConceptScore W4353067642C2778368411 @default.
- W4353067642 hasConceptScore W4353067642C41008148 @default.
- W4353067642 hasConceptScore W4353067642C66938386 @default.
- W4353067642 hasConceptScore W4353067642C76155785 @default.
- W4353067642 hasConceptScore W4353067642C81363708 @default.
- W4353067642 hasIssue "6" @default.
- W4353067642 hasLocation W43530676421 @default.
- W4353067642 hasOpenAccess W4353067642 @default.
- W4353067642 hasPrimaryLocation W43530676421 @default.
- W4353067642 hasRelatedWork W1589735619 @default.
- W4353067642 hasRelatedWork W2262044986 @default.
- W4353067642 hasRelatedWork W2280522315 @default.
- W4353067642 hasRelatedWork W2329655706 @default.
- W4353067642 hasRelatedWork W2374483290 @default.
- W4353067642 hasRelatedWork W2748454020 @default.
- W4353067642 hasRelatedWork W3030342716 @default.
- W4353067642 hasRelatedWork W3181746755 @default.
- W4353067642 hasRelatedWork W787624354 @default.
- W4353067642 hasRelatedWork W3145575296 @default.
- W4353067642 hasVolume "15" @default.
- W4353067642 isParatext "false" @default.
- W4353067642 isRetracted "false" @default.
- W4353067642 workType "article" @default.