Matches in SemOpenAlex for { <https://semopenalex.org/work/W4353071490> ?p ?o ?g. }
- W4353071490 endingPage "1236" @default.
- W4353071490 startingPage "1236" @default.
- W4353071490 abstract "Obtaining and managing groundwater data is difficult as it is common for time series datasets representing groundwater levels at wells to have large gaps of missing data. To address this issue, many methods have been developed to infill or impute the missing data. We present a method for improving data imputation through an iterative refinement model (IRM) machine learning framework that works on any aquifer dataset where each well has a complete record that can be a mixture of measured and input values. This approach corrects the imputed values by using both in situ observations and imputed values from nearby wells. We relied on the idea that similar wells that experience a similar environment (e.g., climate and pumping patterns) exhibit similar changes in groundwater levels. Based on this idea, we revisited the data from every well in the aquifer and “re-imputed” the missing values (i.e., values that had been previously imputed) using both in situ and imputed data from similar, nearby wells. We repeated this process for a predetermined number of iterations—updating the well values synchronously. Using IRM in conjuncture with satellite-based imputation provided better imputation and generated data that could provide valuable insight into aquifer behavior, even when limited or no data were available at individual wells. We applied our method to the Beryl-Enterprise aquifer in Utah, where many wells had large data gaps. We found patterns related to agricultural drawdown and long-term drying, as well as potential evidence for multiple previously unknown aquifers." @default.
- W4353071490 created "2023-03-23" @default.
- W4353071490 creator A5009675319 @default.
- W4353071490 creator A5044560878 @default.
- W4353071490 creator A5044734782 @default.
- W4353071490 creator A5084920909 @default.
- W4353071490 creator A5090585951 @default.
- W4353071490 date "2023-03-22" @default.
- W4353071490 modified "2023-10-14" @default.
- W4353071490 title "Improving Groundwater Imputation through Iterative Refinement Using Spatial and Temporal Correlations from In Situ Data with Machine Learning" @default.
- W4353071490 cites W1486308803 @default.
- W4353071490 cites W1517878447 @default.
- W4353071490 cites W1571086171 @default.
- W4353071490 cites W1671899475 @default.
- W4353071490 cites W1929158363 @default.
- W4353071490 cites W1970729319 @default.
- W4353071490 cites W1973847706 @default.
- W4353071490 cites W1982546148 @default.
- W4353071490 cites W1989898472 @default.
- W4353071490 cites W1990716986 @default.
- W4353071490 cites W2022853706 @default.
- W4353071490 cites W2068621638 @default.
- W4353071490 cites W2070685888 @default.
- W4353071490 cites W2088209570 @default.
- W4353071490 cites W2102596750 @default.
- W4353071490 cites W2104188003 @default.
- W4353071490 cites W2107691197 @default.
- W4353071490 cites W2119132330 @default.
- W4353071490 cites W2149725474 @default.
- W4353071490 cites W2943155923 @default.
- W4353071490 cites W3021796543 @default.
- W4353071490 cites W3033014563 @default.
- W4353071490 cites W3037074555 @default.
- W4353071490 cites W3040305819 @default.
- W4353071490 cites W3100771313 @default.
- W4353071490 cites W4220727972 @default.
- W4353071490 cites W4220926817 @default.
- W4353071490 cites W4221093131 @default.
- W4353071490 cites W4234967753 @default.
- W4353071490 cites W4293733620 @default.
- W4353071490 cites W4294576893 @default.
- W4353071490 cites W4308119820 @default.
- W4353071490 cites W4376453192 @default.
- W4353071490 doi "https://doi.org/10.3390/w15061236" @default.
- W4353071490 hasPublicationYear "2023" @default.
- W4353071490 type Work @default.
- W4353071490 citedByCount "1" @default.
- W4353071490 crossrefType "journal-article" @default.
- W4353071490 hasAuthorship W4353071490A5009675319 @default.
- W4353071490 hasAuthorship W4353071490A5044560878 @default.
- W4353071490 hasAuthorship W4353071490A5044734782 @default.
- W4353071490 hasAuthorship W4353071490A5084920909 @default.
- W4353071490 hasAuthorship W4353071490A5090585951 @default.
- W4353071490 hasBestOaLocation W43530714901 @default.
- W4353071490 hasConcept C119857082 @default.
- W4353071490 hasConcept C124101348 @default.
- W4353071490 hasConcept C127313418 @default.
- W4353071490 hasConcept C127413603 @default.
- W4353071490 hasConcept C147176958 @default.
- W4353071490 hasConcept C174091901 @default.
- W4353071490 hasConcept C187320778 @default.
- W4353071490 hasConcept C2777038186 @default.
- W4353071490 hasConcept C2780103101 @default.
- W4353071490 hasConcept C2781219549 @default.
- W4353071490 hasConcept C41008148 @default.
- W4353071490 hasConcept C58041806 @default.
- W4353071490 hasConcept C75622301 @default.
- W4353071490 hasConcept C76177295 @default.
- W4353071490 hasConcept C76886044 @default.
- W4353071490 hasConcept C9357733 @default.
- W4353071490 hasConceptScore W4353071490C119857082 @default.
- W4353071490 hasConceptScore W4353071490C124101348 @default.
- W4353071490 hasConceptScore W4353071490C127313418 @default.
- W4353071490 hasConceptScore W4353071490C127413603 @default.
- W4353071490 hasConceptScore W4353071490C147176958 @default.
- W4353071490 hasConceptScore W4353071490C174091901 @default.
- W4353071490 hasConceptScore W4353071490C187320778 @default.
- W4353071490 hasConceptScore W4353071490C2777038186 @default.
- W4353071490 hasConceptScore W4353071490C2780103101 @default.
- W4353071490 hasConceptScore W4353071490C2781219549 @default.
- W4353071490 hasConceptScore W4353071490C41008148 @default.
- W4353071490 hasConceptScore W4353071490C58041806 @default.
- W4353071490 hasConceptScore W4353071490C75622301 @default.
- W4353071490 hasConceptScore W4353071490C76177295 @default.
- W4353071490 hasConceptScore W4353071490C76886044 @default.
- W4353071490 hasConceptScore W4353071490C9357733 @default.
- W4353071490 hasFunder F4320306101 @default.
- W4353071490 hasFunder F4320332181 @default.
- W4353071490 hasIssue "6" @default.
- W4353071490 hasLocation W43530714901 @default.
- W4353071490 hasOpenAccess W4353071490 @default.
- W4353071490 hasPrimaryLocation W43530714901 @default.
- W4353071490 hasRelatedWork W1584438522 @default.
- W4353071490 hasRelatedWork W2011634525 @default.
- W4353071490 hasRelatedWork W2381910211 @default.
- W4353071490 hasRelatedWork W2541565311 @default.
- W4353071490 hasRelatedWork W2751555317 @default.
- W4353071490 hasRelatedWork W2784019465 @default.