Matches in SemOpenAlex for { <https://semopenalex.org/work/W4353089720> ?p ?o ?g. }
- W4353089720 endingPage "1694" @default.
- W4353089720 startingPage "1694" @default.
- W4353089720 abstract "Light detection and ranging (LiDAR) has been a tool of choice for 3D dense point cloud reconstructions of forest canopy over the past two decades, but advances in computer vision techniques, such as structure from motion (SfM) photogrammetry, have transformed 2D digital aerial imagery into a powerful, inexpensive and highly available alternative. Canopy modelling is complex and affected by a wide range of inputs. While studies have found dense point cloud reconstructions to be accurate, there is no standard approach to comparing outputs or assessing accuracy. Modelling is particularly challenging in native eucalypt forests, where the canopy displays abrupt vertical changes and highly varied relief. This study first investigated whether a remotely sensed LiDAR dense point cloud reconstruction of a native eucalypt forest completely reproduced canopy cover and accurately predicted tree heights. A further comparison was made with a photogrammetric reconstruction based solely on near-infrared (NIR) imagery to gain some insight into the contribution of the NIR spectral band to the 3D SfM reconstruction of native dry eucalypt open forest. The reconstructions did not produce comparable canopy height models and neither reconstruction completely reproduced canopy cover nor accurately predicted tree heights. Nonetheless, the LiDAR product was more representative of the eucalypt canopy than SfM-NIR. The SfM-NIR results were strongly affected by an absence of data in many locations, which was related to low canopy penetration by the passive optical sensor and sub-optimal feature matching in the photogrammetric pre-processing pipeline. To further investigate the contribution of NIR, future studies could combine NIR imagery captured at multiple solar elevations. A variety of photogrammetric pre-processing settings should continue to be explored in an effort to optimise image feature matching." @default.
- W4353089720 created "2023-03-23" @default.
- W4353089720 creator A5000873625 @default.
- W4353089720 creator A5067626274 @default.
- W4353089720 date "2023-03-21" @default.
- W4353089720 modified "2023-10-01" @default.
- W4353089720 title "A Comparison of UAV-Derived Dense Point Clouds Using LiDAR and NIR Photogrammetry in an Australian Eucalypt Forest" @default.
- W4353089720 cites W2019549520 @default.
- W4353089720 cites W2045954050 @default.
- W4353089720 cites W2067408254 @default.
- W4353089720 cites W2130020583 @default.
- W4353089720 cites W2145243492 @default.
- W4353089720 cites W2296685749 @default.
- W4353089720 cites W2521144071 @default.
- W4353089720 cites W2746267642 @default.
- W4353089720 cites W2778737247 @default.
- W4353089720 cites W2787518617 @default.
- W4353089720 cites W2799667908 @default.
- W4353089720 cites W2807222299 @default.
- W4353089720 cites W2811307883 @default.
- W4353089720 cites W2909136697 @default.
- W4353089720 cites W2910704546 @default.
- W4353089720 cites W2912482200 @default.
- W4353089720 cites W2913003520 @default.
- W4353089720 cites W2914811424 @default.
- W4353089720 cites W2943149949 @default.
- W4353089720 cites W2951005449 @default.
- W4353089720 cites W2957970500 @default.
- W4353089720 cites W2969075701 @default.
- W4353089720 cites W2991277329 @default.
- W4353089720 cites W2993891310 @default.
- W4353089720 cites W3009288410 @default.
- W4353089720 cites W3009698547 @default.
- W4353089720 cites W3010717969 @default.
- W4353089720 cites W3016118819 @default.
- W4353089720 cites W3026646269 @default.
- W4353089720 cites W3027817129 @default.
- W4353089720 cites W3089962227 @default.
- W4353089720 cites W3107064847 @default.
- W4353089720 cites W3136423507 @default.
- W4353089720 cites W3158979202 @default.
- W4353089720 cites W3180304230 @default.
- W4353089720 cites W3195107089 @default.
- W4353089720 cites W3200544699 @default.
- W4353089720 cites W4200484333 @default.
- W4353089720 cites W4221127151 @default.
- W4353089720 cites W4281634205 @default.
- W4353089720 cites W4283078148 @default.
- W4353089720 cites W4283822762 @default.
- W4353089720 cites W4288717963 @default.
- W4353089720 cites W4289914010 @default.
- W4353089720 cites W4296106520 @default.
- W4353089720 cites W4310178218 @default.
- W4353089720 cites W4312100131 @default.
- W4353089720 cites W4313361849 @default.
- W4353089720 doi "https://doi.org/10.3390/rs15061694" @default.
- W4353089720 hasPublicationYear "2023" @default.
- W4353089720 type Work @default.
- W4353089720 citedByCount "1" @default.
- W4353089720 countsByYear W43530897202023 @default.
- W4353089720 crossrefType "journal-article" @default.
- W4353089720 hasAuthorship W4353089720A5000873625 @default.
- W4353089720 hasAuthorship W4353089720A5067626274 @default.
- W4353089720 hasBestOaLocation W43530897201 @default.
- W4353089720 hasConcept C101000010 @default.
- W4353089720 hasConcept C10161872 @default.
- W4353089720 hasConcept C115051666 @default.
- W4353089720 hasConcept C117455697 @default.
- W4353089720 hasConcept C127313418 @default.
- W4353089720 hasConcept C131979681 @default.
- W4353089720 hasConcept C13280743 @default.
- W4353089720 hasConcept C146159030 @default.
- W4353089720 hasConcept C166957645 @default.
- W4353089720 hasConcept C205649164 @default.
- W4353089720 hasConcept C31972630 @default.
- W4353089720 hasConcept C39432304 @default.
- W4353089720 hasConcept C39807119 @default.
- W4353089720 hasConcept C41008148 @default.
- W4353089720 hasConcept C51399673 @default.
- W4353089720 hasConcept C62649853 @default.
- W4353089720 hasConceptScore W4353089720C101000010 @default.
- W4353089720 hasConceptScore W4353089720C10161872 @default.
- W4353089720 hasConceptScore W4353089720C115051666 @default.
- W4353089720 hasConceptScore W4353089720C117455697 @default.
- W4353089720 hasConceptScore W4353089720C127313418 @default.
- W4353089720 hasConceptScore W4353089720C131979681 @default.
- W4353089720 hasConceptScore W4353089720C13280743 @default.
- W4353089720 hasConceptScore W4353089720C146159030 @default.
- W4353089720 hasConceptScore W4353089720C166957645 @default.
- W4353089720 hasConceptScore W4353089720C205649164 @default.
- W4353089720 hasConceptScore W4353089720C31972630 @default.
- W4353089720 hasConceptScore W4353089720C39432304 @default.
- W4353089720 hasConceptScore W4353089720C39807119 @default.
- W4353089720 hasConceptScore W4353089720C41008148 @default.
- W4353089720 hasConceptScore W4353089720C51399673 @default.
- W4353089720 hasConceptScore W4353089720C62649853 @default.
- W4353089720 hasIssue "6" @default.
- W4353089720 hasLocation W43530897201 @default.