Matches in SemOpenAlex for { <https://semopenalex.org/work/W4353094793> ?p ?o ?g. }
- W4353094793 endingPage "107648" @default.
- W4353094793 startingPage "107648" @default.
- W4353094793 abstract "A versatile data-driven model integrating domain knowledge and deep neural networks (DNNs) is proposed for fatigue life prediction with small samples. In the model, traditional fatigue life models, as comprehensive reflections of domain knowledge, are employed to generate pseudo labels for data augmentation. And a new DNN typology, called Branching neural network, is devised to distill useful training information without theoretical biases contamination. Moreover, further model improvement is achieved by the introduction of a subtractive clustering-based procedure for training data collection. The proposed model is experimentally validated in three case studies and shows better prediction performance against traditional models and conventional DNNs under small sample conditions." @default.
- W4353094793 created "2023-03-23" @default.
- W4353094793 creator A5018860229 @default.
- W4353094793 creator A5032186548 @default.
- W4353094793 creator A5051184401 @default.
- W4353094793 date "2023-07-01" @default.
- W4353094793 modified "2023-10-15" @default.
- W4353094793 title "On the integration of domain knowledge and branching neural network for fatigue life prediction with small samples" @default.
- W4353094793 cites W1570834090 @default.
- W4353094793 cites W1969942908 @default.
- W4353094793 cites W1993463231 @default.
- W4353094793 cites W2003454866 @default.
- W4353094793 cites W2003751225 @default.
- W4353094793 cites W2025489563 @default.
- W4353094793 cites W2025788555 @default.
- W4353094793 cites W2027197837 @default.
- W4353094793 cites W2033816954 @default.
- W4353094793 cites W2037600881 @default.
- W4353094793 cites W2040099098 @default.
- W4353094793 cites W2045947142 @default.
- W4353094793 cites W2047173007 @default.
- W4353094793 cites W2047864489 @default.
- W4353094793 cites W2056309857 @default.
- W4353094793 cites W2056407597 @default.
- W4353094793 cites W2057050754 @default.
- W4353094793 cites W2058115341 @default.
- W4353094793 cites W2060447224 @default.
- W4353094793 cites W2062242681 @default.
- W4353094793 cites W2070244001 @default.
- W4353094793 cites W2071370488 @default.
- W4353094793 cites W2075871898 @default.
- W4353094793 cites W2078253407 @default.
- W4353094793 cites W2086304903 @default.
- W4353094793 cites W2137669865 @default.
- W4353094793 cites W2137983211 @default.
- W4353094793 cites W2146471005 @default.
- W4353094793 cites W214962413 @default.
- W4353094793 cites W2201598591 @default.
- W4353094793 cites W2397262573 @default.
- W4353094793 cites W2555415669 @default.
- W4353094793 cites W2583343999 @default.
- W4353094793 cites W2601634446 @default.
- W4353094793 cites W2609995439 @default.
- W4353094793 cites W2612425444 @default.
- W4353094793 cites W2734256217 @default.
- W4353094793 cites W2765226309 @default.
- W4353094793 cites W2773931549 @default.
- W4353094793 cites W2901180479 @default.
- W4353094793 cites W2920061516 @default.
- W4353094793 cites W2953894056 @default.
- W4353094793 cites W2986457312 @default.
- W4353094793 cites W3021027692 @default.
- W4353094793 cites W3028072861 @default.
- W4353094793 cites W3036253961 @default.
- W4353094793 cites W3052541078 @default.
- W4353094793 cites W3107827380 @default.
- W4353094793 cites W3114692006 @default.
- W4353094793 cites W3134875744 @default.
- W4353094793 cites W3136443578 @default.
- W4353094793 cites W3149655747 @default.
- W4353094793 cites W3171764157 @default.
- W4353094793 cites W3174710087 @default.
- W4353094793 cites W3175693282 @default.
- W4353094793 cites W3178127815 @default.
- W4353094793 cites W3186075706 @default.
- W4353094793 cites W3211723343 @default.
- W4353094793 cites W4200520366 @default.
- W4353094793 cites W4205247343 @default.
- W4353094793 cites W4214885488 @default.
- W4353094793 cites W4280526687 @default.
- W4353094793 cites W4281634351 @default.
- W4353094793 cites W4285388499 @default.
- W4353094793 cites W4292830422 @default.
- W4353094793 cites W4294541109 @default.
- W4353094793 cites W4296173912 @default.
- W4353094793 cites W4296242408 @default.
- W4353094793 cites W4313593791 @default.
- W4353094793 cites W4317790317 @default.
- W4353094793 cites W961806556 @default.
- W4353094793 doi "https://doi.org/10.1016/j.ijfatigue.2023.107648" @default.
- W4353094793 hasPublicationYear "2023" @default.
- W4353094793 type Work @default.
- W4353094793 citedByCount "3" @default.
- W4353094793 countsByYear W43530947932023 @default.
- W4353094793 crossrefType "journal-article" @default.
- W4353094793 hasAuthorship W4353094793A5018860229 @default.
- W4353094793 hasAuthorship W4353094793A5032186548 @default.
- W4353094793 hasAuthorship W4353094793A5051184401 @default.
- W4353094793 hasConcept C119857082 @default.
- W4353094793 hasConcept C124101348 @default.
- W4353094793 hasConcept C134306372 @default.
- W4353094793 hasConcept C142362112 @default.
- W4353094793 hasConcept C150799807 @default.
- W4353094793 hasConcept C153349607 @default.
- W4353094793 hasConcept C154945302 @default.
- W4353094793 hasConcept C159985019 @default.
- W4353094793 hasConcept C192562407 @default.
- W4353094793 hasConcept C206175624 @default.