Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360585276> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4360585276 abstract "The Internet of Things (IoT) is a growing technology which connects things or objects with the internet and also enables things to collect and exchange data in the network. IoT plays a vital role in all domains, especially healthcare, where IoT used for monitoring patients and taking valuable decision for a particular problem. In the current era, diabetes is a common disease among most of the people. Diabetes is associated with many life-threatening diseases such as heart attack, kidney failure, Vison loss, Covid, etc., Type 2 diabetes is a type of diabetes that usually affects the elderly. Therefore, early detection or prediction can help prevent the patient from being at risk. However, accurately analyzing the dataset collected to make the right decision is one of the biggest tasks and improving the accuracy of the prediction model is another important task. There is several analysis models are available, over the years, various Neural Network models have been used in clinical diagnosis. However, these models are still sustained a particular level of error and less accuracy in training and testing of disease diagnosis. So, this paper proposed the Enhanced Feed forwarded Neural Network with Adam Optimization model (EFNNAO) including multiple layers of network that suitable for processing IoT based dataset. The proposed model effectively structured for predicting the type 2 diabetes in IoT environment. The designed network has the ability to learn every aspect of the dataset and perform calculations efficiently by avoiding under fitting and over-fitting. Finally, the proposed model is compared with other models which are in the same aspect. The proposed EFNNAO is outperformed than other models with 92.02% accuracy." @default.
- W4360585276 created "2023-03-24" @default.
- W4360585276 creator A5033812422 @default.
- W4360585276 creator A5066251249 @default.
- W4360585276 date "2022-12-14" @default.
- W4360585276 modified "2023-09-30" @default.
- W4360585276 title "Enhanced Feed Forward Neural Network with Adam Optimization Model (Efnnao) For Predicting the Type 2 Diabetes Using Internet of Things" @default.
- W4360585276 cites W2756291343 @default.
- W4360585276 cites W2807893746 @default.
- W4360585276 cites W2827247000 @default.
- W4360585276 cites W2887123484 @default.
- W4360585276 cites W2891221355 @default.
- W4360585276 cites W2900329012 @default.
- W4360585276 cites W2921196390 @default.
- W4360585276 cites W2951635356 @default.
- W4360585276 cites W2952380779 @default.
- W4360585276 cites W2956655078 @default.
- W4360585276 cites W2961520387 @default.
- W4360585276 cites W2973569693 @default.
- W4360585276 cites W2979543333 @default.
- W4360585276 cites W3003209267 @default.
- W4360585276 cites W3006913750 @default.
- W4360585276 cites W3017209650 @default.
- W4360585276 cites W3037362002 @default.
- W4360585276 cites W3043363778 @default.
- W4360585276 cites W3047824088 @default.
- W4360585276 cites W3099185017 @default.
- W4360585276 cites W3109457141 @default.
- W4360585276 cites W3137532457 @default.
- W4360585276 cites W3185859939 @default.
- W4360585276 cites W3204734758 @default.
- W4360585276 cites W4206438339 @default.
- W4360585276 cites W4220991594 @default.
- W4360585276 cites W4239048373 @default.
- W4360585276 cites W4298164033 @default.
- W4360585276 doi "https://doi.org/10.1109/ic3i56241.2022.10073047" @default.
- W4360585276 hasPublicationYear "2022" @default.
- W4360585276 type Work @default.
- W4360585276 citedByCount "0" @default.
- W4360585276 crossrefType "proceedings-article" @default.
- W4360585276 hasAuthorship W4360585276A5033812422 @default.
- W4360585276 hasAuthorship W4360585276A5066251249 @default.
- W4360585276 hasConcept C110875604 @default.
- W4360585276 hasConcept C119857082 @default.
- W4360585276 hasConcept C124101348 @default.
- W4360585276 hasConcept C127413603 @default.
- W4360585276 hasConcept C136764020 @default.
- W4360585276 hasConcept C154945302 @default.
- W4360585276 hasConcept C201995342 @default.
- W4360585276 hasConcept C2780451532 @default.
- W4360585276 hasConcept C38652104 @default.
- W4360585276 hasConcept C41008148 @default.
- W4360585276 hasConcept C50644808 @default.
- W4360585276 hasConcept C81860439 @default.
- W4360585276 hasConceptScore W4360585276C110875604 @default.
- W4360585276 hasConceptScore W4360585276C119857082 @default.
- W4360585276 hasConceptScore W4360585276C124101348 @default.
- W4360585276 hasConceptScore W4360585276C127413603 @default.
- W4360585276 hasConceptScore W4360585276C136764020 @default.
- W4360585276 hasConceptScore W4360585276C154945302 @default.
- W4360585276 hasConceptScore W4360585276C201995342 @default.
- W4360585276 hasConceptScore W4360585276C2780451532 @default.
- W4360585276 hasConceptScore W4360585276C38652104 @default.
- W4360585276 hasConceptScore W4360585276C41008148 @default.
- W4360585276 hasConceptScore W4360585276C50644808 @default.
- W4360585276 hasConceptScore W4360585276C81860439 @default.
- W4360585276 hasLocation W43605852761 @default.
- W4360585276 hasOpenAccess W4360585276 @default.
- W4360585276 hasPrimaryLocation W43605852761 @default.
- W4360585276 hasRelatedWork W2751166006 @default.
- W4360585276 hasRelatedWork W2775965274 @default.
- W4360585276 hasRelatedWork W2961085424 @default.
- W4360585276 hasRelatedWork W3046775127 @default.
- W4360585276 hasRelatedWork W4285260836 @default.
- W4360585276 hasRelatedWork W4286629047 @default.
- W4360585276 hasRelatedWork W4306321456 @default.
- W4360585276 hasRelatedWork W4306674287 @default.
- W4360585276 hasRelatedWork W1629725936 @default.
- W4360585276 hasRelatedWork W4224009465 @default.
- W4360585276 isParatext "false" @default.
- W4360585276 isRetracted "false" @default.
- W4360585276 workType "article" @default.