Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360585320> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4360585320 abstract "“Machine learning (ML) ”-based large-scale data insights are the foundation of many contemporary data-driven technologies. ML systems offer ways to define and carry out certain ML workloads effectively and flexibly. Because of information-driven application highlights, information-driven responsibility elements, and framework designs affected by customary information the executives draw near, data the board is at the centre of numerous ML frameworks. Moreover, a ton of present-day information-driven arrangements are based on AI (ML)- based on enormous data bits of knowledge. A few ML occupations can be characterized and executed effectively and deftly utilizing ML frameworks. Data the executives are at the underpinning of numerous ML frameworks are reasonable to information-driven application qualities, information-driven responsibilities attributes, and framework models affected by old-style information the board techniques. Various ML clients with different ML lifecycle obligations and ML abilities are available in many Calculations. Information researchers are ML clients who have specialized information in ML and examination to control the information and make ML models for the business. The potential issues with data management that might arise in settings where machine learning procedures are used in the real world. Because we have first-hand experience with such huge pipelines, we can home in on issues relating to the interpretation of training data as well as its validation, cleaning, and enrichment. The objective of this article is to draw attention to these issues, establish links to previous efforts in the database area, and identify research questions that have not yet been solved." @default.
- W4360585320 created "2023-03-24" @default.
- W4360585320 creator A5013559875 @default.
- W4360585320 creator A5018389767 @default.
- W4360585320 creator A5056486375 @default.
- W4360585320 creator A5061113111 @default.
- W4360585320 creator A5084771332 @default.
- W4360585320 creator A5086907840 @default.
- W4360585320 date "2022-12-14" @default.
- W4360585320 modified "2023-10-16" @default.
- W4360585320 title "Data Management and Visual Information Processing using Machine Learning" @default.
- W4360585320 cites W2084135943 @default.
- W4360585320 cites W2091459966 @default.
- W4360585320 cites W2102605133 @default.
- W4360585320 cites W2357449897 @default.
- W4360585320 cites W2762825139 @default.
- W4360585320 cites W2896625020 @default.
- W4360585320 cites W2913240367 @default.
- W4360585320 cites W2942047515 @default.
- W4360585320 cites W2979417040 @default.
- W4360585320 cites W2982657588 @default.
- W4360585320 cites W2996908335 @default.
- W4360585320 cites W3035434890 @default.
- W4360585320 cites W3153045320 @default.
- W4360585320 doi "https://doi.org/10.1109/ic3i56241.2022.10072779" @default.
- W4360585320 hasPublicationYear "2022" @default.
- W4360585320 type Work @default.
- W4360585320 citedByCount "0" @default.
- W4360585320 crossrefType "proceedings-article" @default.
- W4360585320 hasAuthorship W4360585320A5013559875 @default.
- W4360585320 hasAuthorship W4360585320A5018389767 @default.
- W4360585320 hasAuthorship W4360585320A5056486375 @default.
- W4360585320 hasAuthorship W4360585320A5061113111 @default.
- W4360585320 hasAuthorship W4360585320A5084771332 @default.
- W4360585320 hasAuthorship W4360585320A5086907840 @default.
- W4360585320 hasConcept C127413603 @default.
- W4360585320 hasConcept C147176958 @default.
- W4360585320 hasConcept C154945302 @default.
- W4360585320 hasConcept C2522767166 @default.
- W4360585320 hasConcept C2775924081 @default.
- W4360585320 hasConcept C2780871342 @default.
- W4360585320 hasConcept C41008148 @default.
- W4360585320 hasConcept C56739046 @default.
- W4360585320 hasConceptScore W4360585320C127413603 @default.
- W4360585320 hasConceptScore W4360585320C147176958 @default.
- W4360585320 hasConceptScore W4360585320C154945302 @default.
- W4360585320 hasConceptScore W4360585320C2522767166 @default.
- W4360585320 hasConceptScore W4360585320C2775924081 @default.
- W4360585320 hasConceptScore W4360585320C2780871342 @default.
- W4360585320 hasConceptScore W4360585320C41008148 @default.
- W4360585320 hasConceptScore W4360585320C56739046 @default.
- W4360585320 hasLocation W43605853201 @default.
- W4360585320 hasOpenAccess W4360585320 @default.
- W4360585320 hasPrimaryLocation W43605853201 @default.
- W4360585320 hasRelatedWork W1279126124 @default.
- W4360585320 hasRelatedWork W192439166 @default.
- W4360585320 hasRelatedWork W1996408511 @default.
- W4360585320 hasRelatedWork W2597842888 @default.
- W4360585320 hasRelatedWork W2909737339 @default.
- W4360585320 hasRelatedWork W3107474891 @default.
- W4360585320 hasRelatedWork W3184668607 @default.
- W4360585320 hasRelatedWork W329878987 @default.
- W4360585320 hasRelatedWork W4247880953 @default.
- W4360585320 hasRelatedWork W2736694211 @default.
- W4360585320 isParatext "false" @default.
- W4360585320 isRetracted "false" @default.
- W4360585320 workType "article" @default.