Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360595102> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4360595102 endingPage "51" @default.
- W4360595102 startingPage "42" @default.
- W4360595102 abstract "Objective: The multivariate adaptive regression splines (MARS) is very effective in order to model linear or nonlinear relationships. The Cox regression residuals-based MARS model, which integrates Cox regression and MARS approaches, was created to assess the relationships between efficient risk factors on the survival. The purpose of this study is to introduce the Survival-MARS (SM) model which uses the Cox-Snell, Martingale, and deviance residuals. Also,our aim is to compare the performance of the models created with residuals at different sample sizes and correlation levels with the simulation study in order to determine the most effective residual type that can be used in the SM model. Material and Methods: Performances of SM models that use CoxSnell,Martingale, and deviance residual types were compared at different sample sizes (n = 30, 100, 150, 250, 500, 1.000), with both no correlation (r = 0.00) and medium (r = 0.50) and high (r = 0.90) correlations between predictors. SM model performances were compared via minimum generalized cross-validation and the sum of mean squared error values.. Results: In all scenarios, SM models with Cox-Snell residuals have the best performance compared to other models established with other residuals. Martingale and deviance residuals were affected by high correlation and low sample sizes. Conclusion: In case of linear relationship between risk factors, SM models with Cox-Snell residuals are quite successful in explaining these relationship structures and enable the effects on the dependent variable to easily interpret." @default.
- W4360595102 created "2023-03-24" @default.
- W4360595102 creator A5024070178 @default.
- W4360595102 creator A5030681564 @default.
- W4360595102 creator A5046440421 @default.
- W4360595102 date "2023-01-01" @default.
- W4360595102 modified "2023-10-14" @default.
- W4360595102 title "Use of Survival Data in Multivariate Adaptive Regression Analysis: Simulation Study" @default.
- W4360595102 doi "https://doi.org/10.5336/biostatic.2022-94594" @default.
- W4360595102 hasPublicationYear "2023" @default.
- W4360595102 type Work @default.
- W4360595102 citedByCount "0" @default.
- W4360595102 crossrefType "journal-article" @default.
- W4360595102 hasAuthorship W4360595102A5024070178 @default.
- W4360595102 hasAuthorship W4360595102A5030681564 @default.
- W4360595102 hasAuthorship W4360595102A5046440421 @default.
- W4360595102 hasBestOaLocation W43605951021 @default.
- W4360595102 hasConcept C105795698 @default.
- W4360595102 hasConcept C111350023 @default.
- W4360595102 hasConcept C11413529 @default.
- W4360595102 hasConcept C117220453 @default.
- W4360595102 hasConcept C121332964 @default.
- W4360595102 hasConcept C1276947 @default.
- W4360595102 hasConcept C129848803 @default.
- W4360595102 hasConcept C149782125 @default.
- W4360595102 hasConcept C152877465 @default.
- W4360595102 hasConcept C155512373 @default.
- W4360595102 hasConcept C161584116 @default.
- W4360595102 hasConcept C17634605 @default.
- W4360595102 hasConcept C177599991 @default.
- W4360595102 hasConcept C19499675 @default.
- W4360595102 hasConcept C2524010 @default.
- W4360595102 hasConcept C33923547 @default.
- W4360595102 hasConcept C41587187 @default.
- W4360595102 hasConcept C44882253 @default.
- W4360595102 hasConcept C48406656 @default.
- W4360595102 hasConcept C48921125 @default.
- W4360595102 hasConcept C50382708 @default.
- W4360595102 hasConcept C64946054 @default.
- W4360595102 hasConcept C83260615 @default.
- W4360595102 hasConcept C83546350 @default.
- W4360595102 hasConceptScore W4360595102C105795698 @default.
- W4360595102 hasConceptScore W4360595102C111350023 @default.
- W4360595102 hasConceptScore W4360595102C11413529 @default.
- W4360595102 hasConceptScore W4360595102C117220453 @default.
- W4360595102 hasConceptScore W4360595102C121332964 @default.
- W4360595102 hasConceptScore W4360595102C1276947 @default.
- W4360595102 hasConceptScore W4360595102C129848803 @default.
- W4360595102 hasConceptScore W4360595102C149782125 @default.
- W4360595102 hasConceptScore W4360595102C152877465 @default.
- W4360595102 hasConceptScore W4360595102C155512373 @default.
- W4360595102 hasConceptScore W4360595102C161584116 @default.
- W4360595102 hasConceptScore W4360595102C17634605 @default.
- W4360595102 hasConceptScore W4360595102C177599991 @default.
- W4360595102 hasConceptScore W4360595102C19499675 @default.
- W4360595102 hasConceptScore W4360595102C2524010 @default.
- W4360595102 hasConceptScore W4360595102C33923547 @default.
- W4360595102 hasConceptScore W4360595102C41587187 @default.
- W4360595102 hasConceptScore W4360595102C44882253 @default.
- W4360595102 hasConceptScore W4360595102C48406656 @default.
- W4360595102 hasConceptScore W4360595102C48921125 @default.
- W4360595102 hasConceptScore W4360595102C50382708 @default.
- W4360595102 hasConceptScore W4360595102C64946054 @default.
- W4360595102 hasConceptScore W4360595102C83260615 @default.
- W4360595102 hasConceptScore W4360595102C83546350 @default.
- W4360595102 hasIssue "1" @default.
- W4360595102 hasLocation W43605951021 @default.
- W4360595102 hasOpenAccess W4360595102 @default.
- W4360595102 hasPrimaryLocation W43605951021 @default.
- W4360595102 hasRelatedWork W2065439233 @default.
- W4360595102 hasRelatedWork W2366651177 @default.
- W4360595102 hasRelatedWork W2380426006 @default.
- W4360595102 hasRelatedWork W2790053847 @default.
- W4360595102 hasRelatedWork W2889522799 @default.
- W4360595102 hasRelatedWork W3199622279 @default.
- W4360595102 hasRelatedWork W33359546 @default.
- W4360595102 hasRelatedWork W4386637815 @default.
- W4360595102 hasRelatedWork W2463955626 @default.
- W4360595102 hasRelatedWork W2730019133 @default.
- W4360595102 hasVolume "15" @default.
- W4360595102 isParatext "false" @default.
- W4360595102 isRetracted "false" @default.
- W4360595102 workType "article" @default.