Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360596135> ?p ?o ?g. }
- W4360596135 endingPage "260" @default.
- W4360596135 startingPage "244" @default.
- W4360596135 abstract "Automated identification of the relationships between traffic actors and surrounding objects, in order to describe their behavior and predict their intentions, has become the focus of increasing attention in the field of autonomous driving. Therefore, in this work, we propose a Road Scene Graphs-Graph Convolutional Network (RSG-GCN) as a novel, graph-based model for predicting the topological graph structure of a given traffic scene. The status of the actors and HD map information are integrated as prior knowledge, allowing the edges linking the actor nodes to capture potential semantic relationships, such as “vehicle approaching pedestrian” and “pedestrian waiting at intersection”. To train this model, we created our own RSG dataset, as well as a relational dataset and benchmark derived from nuScenes. Our extensive range of experiments demonstrate that our model can more accurately predict semantic relationships and behavior in a given traffic scene than other popular traffic scene prediction models. In particular, regarding the use of HD map prior knowledge, we found that the resulting increase in accuracy significantly outweighs performance loss caused by the increase in graph size. The downstream applications of RSG include traffic scene retrieval and synthetic traffic scene generation, which are briefly described." @default.
- W4360596135 created "2023-03-24" @default.
- W4360596135 creator A5001913122 @default.
- W4360596135 creator A5013831211 @default.
- W4360596135 creator A5042118446 @default.
- W4360596135 creator A5084509555 @default.
- W4360596135 date "2023-01-01" @default.
- W4360596135 modified "2023-10-05" @default.
- W4360596135 title "RSG-GCN: Predicting Semantic Relationships in Urban Traffic Scene With Map Geometric Prior" @default.
- W4360596135 cites W2077069816 @default.
- W4360596135 cites W2116341502 @default.
- W4360596135 cites W2144257846 @default.
- W4360596135 cites W2147405597 @default.
- W4360596135 cites W2157331557 @default.
- W4360596135 cites W2206222117 @default.
- W4360596135 cites W2250384498 @default.
- W4360596135 cites W2277195237 @default.
- W4360596135 cites W2479423890 @default.
- W4360596135 cites W2558027072 @default.
- W4360596135 cites W2579549467 @default.
- W4360596135 cites W2606202972 @default.
- W4360596135 cites W2740962769 @default.
- W4360596135 cites W2789158025 @default.
- W4360596135 cites W2798786289 @default.
- W4360596135 cites W2810482788 @default.
- W4360596135 cites W2885138528 @default.
- W4360596135 cites W2901504064 @default.
- W4360596135 cites W2903709398 @default.
- W4360596135 cites W2941717697 @default.
- W4360596135 cites W2962785943 @default.
- W4360596135 cites W2963016445 @default.
- W4360596135 cites W2963150697 @default.
- W4360596135 cites W2963195425 @default.
- W4360596135 cites W2963451777 @default.
- W4360596135 cites W2963518342 @default.
- W4360596135 cites W2963536419 @default.
- W4360596135 cites W2964199361 @default.
- W4360596135 cites W2971323980 @default.
- W4360596135 cites W2985936292 @default.
- W4360596135 cites W2991216808 @default.
- W4360596135 cites W2992049873 @default.
- W4360596135 cites W2997514790 @default.
- W4360596135 cites W2997958396 @default.
- W4360596135 cites W3004349648 @default.
- W4360596135 cites W3006854884 @default.
- W4360596135 cites W3034739212 @default.
- W4360596135 cites W3035172746 @default.
- W4360596135 cites W3035564946 @default.
- W4360596135 cites W3035574168 @default.
- W4360596135 cites W3091724539 @default.
- W4360596135 cites W3108486966 @default.
- W4360596135 cites W3110015970 @default.
- W4360596135 cites W3133663379 @default.
- W4360596135 cites W3157984529 @default.
- W4360596135 cites W3161293445 @default.
- W4360596135 cites W3167586364 @default.
- W4360596135 cites W3173280621 @default.
- W4360596135 cites W3186621246 @default.
- W4360596135 cites W3189825284 @default.
- W4360596135 cites W3200711907 @default.
- W4360596135 cites W3207981904 @default.
- W4360596135 cites W3209257850 @default.
- W4360596135 cites W4205354138 @default.
- W4360596135 cites W4210883579 @default.
- W4360596135 cites W4226118181 @default.
- W4360596135 cites W4285813097 @default.
- W4360596135 cites W4289436753 @default.
- W4360596135 cites W4293812175 @default.
- W4360596135 cites W4313590738 @default.
- W4360596135 cites W3114033861 @default.
- W4360596135 doi "https://doi.org/10.1109/ojits.2023.3260624" @default.
- W4360596135 hasPublicationYear "2023" @default.
- W4360596135 type Work @default.
- W4360596135 citedByCount "0" @default.
- W4360596135 crossrefType "journal-article" @default.
- W4360596135 hasAuthorship W4360596135A5001913122 @default.
- W4360596135 hasAuthorship W4360596135A5013831211 @default.
- W4360596135 hasAuthorship W4360596135A5042118446 @default.
- W4360596135 hasAuthorship W4360596135A5084509555 @default.
- W4360596135 hasBestOaLocation W43605961351 @default.
- W4360596135 hasConcept C127413603 @default.
- W4360596135 hasConcept C132525143 @default.
- W4360596135 hasConcept C154945302 @default.
- W4360596135 hasConcept C179372163 @default.
- W4360596135 hasConcept C185798385 @default.
- W4360596135 hasConcept C202444582 @default.
- W4360596135 hasConcept C205649164 @default.
- W4360596135 hasConcept C205711294 @default.
- W4360596135 hasConcept C22212356 @default.
- W4360596135 hasConcept C2777113093 @default.
- W4360596135 hasConcept C33923547 @default.
- W4360596135 hasConcept C41008148 @default.
- W4360596135 hasConcept C58640448 @default.
- W4360596135 hasConcept C64543145 @default.
- W4360596135 hasConcept C80444323 @default.
- W4360596135 hasConcept C9652623 @default.
- W4360596135 hasConceptScore W4360596135C127413603 @default.
- W4360596135 hasConceptScore W4360596135C132525143 @default.