Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360602178> ?p ?o ?g. }
- W4360602178 endingPage "106335" @default.
- W4360602178 startingPage "106335" @default.
- W4360602178 abstract "Forecasting energy demand has become an essential element for energy stakeholders in planning and reducing the energy consumption of buildings. Machine learning techniques have become popular for forecasting building energy demand owing to their reliability and cost efficiency. This research aims to propose a model for predicting the energy consumption of PCM-integrated residential buildings in the Mediterranean climate region. For the model development, Multiple Regression (MR), Support Vector Machines (SVM), and Artificial Neural Networks (ANN) were used. For the first time, the PCM melting point, building, and environment parameters were considered simultaneously as input parameters to predict the energy consumption of PCM-integrated buildings. The energy simulation of nine different building types located in seven different cities of the Mediterranean climate region were performed to generate the database. After the model development, the most influential design parameters were established by performing sensitivity and parametric analysis. The results showed that the optimum PCM for annual energy savings varied from PCM-25 to PCM-27. The shape factor significantly influenced the specific heating and cooling demand of buildings. Moreover, the statistically evaluated prediction models showed that SVM and ANN methods are more reliable, with R2 value of over 0.99. The externally validated prediction models demonstrated that the ANN model can estimate the energy consumption of PCM-integrated buildings with more accuracy. From sensitivity analysis, it was found that cooling degree days, heating degree days, volume, shape factor, and PCM melting point are the key influencing parameters affecting the energy demand of buildings." @default.
- W4360602178 created "2023-03-24" @default.
- W4360602178 creator A5026366371 @default.
- W4360602178 creator A5034593368 @default.
- W4360602178 creator A5067288492 @default.
- W4360602178 creator A5082668920 @default.
- W4360602178 creator A5084685943 @default.
- W4360602178 date "2023-07-01" @default.
- W4360602178 modified "2023-10-13" @default.
- W4360602178 title "Forecasting energy demand of PCM integrated residential buildings: A machine learning approach" @default.
- W4360602178 cites W1860632652 @default.
- W4360602178 cites W1967001651 @default.
- W4360602178 cites W1967090386 @default.
- W4360602178 cites W1977432880 @default.
- W4360602178 cites W1978393387 @default.
- W4360602178 cites W1978820306 @default.
- W4360602178 cites W1988434901 @default.
- W4360602178 cites W1995604530 @default.
- W4360602178 cites W1996467966 @default.
- W4360602178 cites W1998230236 @default.
- W4360602178 cites W2000548672 @default.
- W4360602178 cites W2011580004 @default.
- W4360602178 cites W2022695033 @default.
- W4360602178 cites W2051607409 @default.
- W4360602178 cites W2064469609 @default.
- W4360602178 cites W2074993972 @default.
- W4360602178 cites W2087661061 @default.
- W4360602178 cites W2108388258 @default.
- W4360602178 cites W2164709595 @default.
- W4360602178 cites W2194280906 @default.
- W4360602178 cites W2252895077 @default.
- W4360602178 cites W2291129088 @default.
- W4360602178 cites W2523768631 @default.
- W4360602178 cites W2595984151 @default.
- W4360602178 cites W2621283876 @default.
- W4360602178 cites W2743144095 @default.
- W4360602178 cites W2750697805 @default.
- W4360602178 cites W2752215552 @default.
- W4360602178 cites W2769323290 @default.
- W4360602178 cites W2802491896 @default.
- W4360602178 cites W2893064085 @default.
- W4360602178 cites W2922086944 @default.
- W4360602178 cites W2926407963 @default.
- W4360602178 cites W2939483956 @default.
- W4360602178 cites W2961951330 @default.
- W4360602178 cites W2968315319 @default.
- W4360602178 cites W2976039593 @default.
- W4360602178 cites W2980539464 @default.
- W4360602178 cites W3011124197 @default.
- W4360602178 cites W3068046112 @default.
- W4360602178 cites W3087496317 @default.
- W4360602178 cites W3102841270 @default.
- W4360602178 cites W3108726001 @default.
- W4360602178 cites W3121067312 @default.
- W4360602178 cites W3147191068 @default.
- W4360602178 cites W3159367627 @default.
- W4360602178 cites W3161615503 @default.
- W4360602178 cites W3175272552 @default.
- W4360602178 cites W3191585224 @default.
- W4360602178 cites W3212772147 @default.
- W4360602178 cites W3215971893 @default.
- W4360602178 cites W4206546232 @default.
- W4360602178 cites W4280516029 @default.
- W4360602178 cites W4280611685 @default.
- W4360602178 cites W4308922793 @default.
- W4360602178 cites W4309779726 @default.
- W4360602178 cites W4320474846 @default.
- W4360602178 cites W916199965 @default.
- W4360602178 doi "https://doi.org/10.1016/j.jobe.2023.106335" @default.
- W4360602178 hasPublicationYear "2023" @default.
- W4360602178 type Work @default.
- W4360602178 citedByCount "1" @default.
- W4360602178 crossrefType "journal-article" @default.
- W4360602178 hasAuthorship W4360602178A5026366371 @default.
- W4360602178 hasAuthorship W4360602178A5034593368 @default.
- W4360602178 hasAuthorship W4360602178A5067288492 @default.
- W4360602178 hasAuthorship W4360602178A5082668920 @default.
- W4360602178 hasAuthorship W4360602178A5084685943 @default.
- W4360602178 hasConcept C105795698 @default.
- W4360602178 hasConcept C117251300 @default.
- W4360602178 hasConcept C119599485 @default.
- W4360602178 hasConcept C127413603 @default.
- W4360602178 hasConcept C154945302 @default.
- W4360602178 hasConcept C205763305 @default.
- W4360602178 hasConcept C21200559 @default.
- W4360602178 hasConcept C24326235 @default.
- W4360602178 hasConcept C2742236 @default.
- W4360602178 hasConcept C2780165032 @default.
- W4360602178 hasConcept C33923547 @default.
- W4360602178 hasConcept C41008148 @default.
- W4360602178 hasConcept C44154836 @default.
- W4360602178 hasConcept C50644808 @default.
- W4360602178 hasConceptScore W4360602178C105795698 @default.
- W4360602178 hasConceptScore W4360602178C117251300 @default.
- W4360602178 hasConceptScore W4360602178C119599485 @default.
- W4360602178 hasConceptScore W4360602178C127413603 @default.
- W4360602178 hasConceptScore W4360602178C154945302 @default.
- W4360602178 hasConceptScore W4360602178C205763305 @default.