Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360602301> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4360602301 endingPage "100307" @default.
- W4360602301 startingPage "100307" @default.
- W4360602301 abstract "Lung cancer has been the leading cause of cancer-related deaths worldwide. Early detection and diagnosis of lung cancer can greatly improve the chances of survival for patients. Machine learning has been increasingly used in the medical sector for the detection of lung cancer, but the lack of interpretability of these models remains a significant challenge. Explainable machine learning (XML) is a new approach that aims to provide transparency and interpretability for machine learning models. The entire experiment has been performed in the lung cancer dataset obtained from Kaggle. The outcome of the predictive model with ROS (Random Oversampling) class balancing technique is used to comprehend the most relevant clinical features that contributed to the prediction of lung cancer using a machine learning explainable technique termed SHAP (SHapley Additive exPlanation). The results show the robustness of GBM's capacity to detect lung cancer, with 98.76% accuracy, 98.79% precision, 98.76% recall, 98.76% F-Measure, and 0.16% error rate, respectively. Finally, a mobile app is developed incorporating the best model to show the efficacy of our approach." @default.
- W4360602301 created "2023-03-24" @default.
- W4360602301 creator A5003750106 @default.
- W4360602301 creator A5020010180 @default.
- W4360602301 creator A5054348574 @default.
- W4360602301 creator A5062781904 @default.
- W4360602301 creator A5068173051 @default.
- W4360602301 creator A5082762260 @default.
- W4360602301 date "2023-01-01" @default.
- W4360602301 modified "2023-10-10" @default.
- W4360602301 title "XML-GBM lung: An explainable machine learning-based application for the diagnosis of lung cancer" @default.
- W4360602301 cites W1972785704 @default.
- W4360602301 cites W1978578227 @default.
- W4360602301 cites W2026663933 @default.
- W4360602301 cites W2029667502 @default.
- W4360602301 cites W2124611117 @default.
- W4360602301 cites W2125831750 @default.
- W4360602301 cites W2170505850 @default.
- W4360602301 cites W2531264786 @default.
- W4360602301 cites W2615067706 @default.
- W4360602301 cites W2892741787 @default.
- W4360602301 cites W2918408501 @default.
- W4360602301 cites W2966218717 @default.
- W4360602301 cites W2969476445 @default.
- W4360602301 cites W2999615587 @default.
- W4360602301 cites W3011072549 @default.
- W4360602301 cites W3011376692 @default.
- W4360602301 cites W3036319923 @default.
- W4360602301 cites W3039910405 @default.
- W4360602301 cites W3043310174 @default.
- W4360602301 cites W3043761056 @default.
- W4360602301 cites W4200265911 @default.
- W4360602301 cites W4205344436 @default.
- W4360602301 cites W4206997722 @default.
- W4360602301 cites W4306146238 @default.
- W4360602301 cites W4306651734 @default.
- W4360602301 cites W4309307134 @default.
- W4360602301 doi "https://doi.org/10.1016/j.jpi.2023.100307" @default.
- W4360602301 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37025326" @default.
- W4360602301 hasPublicationYear "2023" @default.
- W4360602301 type Work @default.
- W4360602301 citedByCount "1" @default.
- W4360602301 crossrefType "journal-article" @default.
- W4360602301 hasAuthorship W4360602301A5003750106 @default.
- W4360602301 hasAuthorship W4360602301A5020010180 @default.
- W4360602301 hasAuthorship W4360602301A5054348574 @default.
- W4360602301 hasAuthorship W4360602301A5062781904 @default.
- W4360602301 hasAuthorship W4360602301A5068173051 @default.
- W4360602301 hasAuthorship W4360602301A5082762260 @default.
- W4360602301 hasBestOaLocation W43606023011 @default.
- W4360602301 hasConcept C104317684 @default.
- W4360602301 hasConcept C119857082 @default.
- W4360602301 hasConcept C143998085 @default.
- W4360602301 hasConcept C154945302 @default.
- W4360602301 hasConcept C169258074 @default.
- W4360602301 hasConcept C185592680 @default.
- W4360602301 hasConcept C2776256026 @default.
- W4360602301 hasConcept C2781067378 @default.
- W4360602301 hasConcept C41008148 @default.
- W4360602301 hasConcept C55493867 @default.
- W4360602301 hasConcept C63479239 @default.
- W4360602301 hasConcept C71924100 @default.
- W4360602301 hasConceptScore W4360602301C104317684 @default.
- W4360602301 hasConceptScore W4360602301C119857082 @default.
- W4360602301 hasConceptScore W4360602301C143998085 @default.
- W4360602301 hasConceptScore W4360602301C154945302 @default.
- W4360602301 hasConceptScore W4360602301C169258074 @default.
- W4360602301 hasConceptScore W4360602301C185592680 @default.
- W4360602301 hasConceptScore W4360602301C2776256026 @default.
- W4360602301 hasConceptScore W4360602301C2781067378 @default.
- W4360602301 hasConceptScore W4360602301C41008148 @default.
- W4360602301 hasConceptScore W4360602301C55493867 @default.
- W4360602301 hasConceptScore W4360602301C63479239 @default.
- W4360602301 hasConceptScore W4360602301C71924100 @default.
- W4360602301 hasLocation W43606023011 @default.
- W4360602301 hasLocation W43606023012 @default.
- W4360602301 hasLocation W43606023013 @default.
- W4360602301 hasOpenAccess W4360602301 @default.
- W4360602301 hasPrimaryLocation W43606023011 @default.
- W4360602301 hasRelatedWork W3006943036 @default.
- W4360602301 hasRelatedWork W3028778360 @default.
- W4360602301 hasRelatedWork W3105192099 @default.
- W4360602301 hasRelatedWork W3214630042 @default.
- W4360602301 hasRelatedWork W4200027074 @default.
- W4360602301 hasRelatedWork W4206534706 @default.
- W4360602301 hasRelatedWork W4229079080 @default.
- W4360602301 hasRelatedWork W4385957992 @default.
- W4360602301 hasRelatedWork W4385965371 @default.
- W4360602301 hasRelatedWork W4386025632 @default.
- W4360602301 hasVolume "14" @default.
- W4360602301 isParatext "false" @default.
- W4360602301 isRetracted "false" @default.
- W4360602301 workType "article" @default.