Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360614943> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4360614943 endingPage "377" @default.
- W4360614943 startingPage "362" @default.
- W4360614943 abstract "This paper presents a new model, the Weighted Extreme Learning Machine optimized Diagonal-Kernels Convolution (WELM-ODKC), for automatic skin cancer detection that addresses imbalanced data and eliminates inter-operator variability. The model combines the WELM and the Enhanced Remora Optimization Algorithm (EROA) with the Diagonal-Kernels Convolution Neural Network (DKCNN) to enhance the weight function and accurately predict skin lesion class. The model was evaluated on the MNIST HAM10000 and PAD-UFES-20 datasets and outperformed other existing skin cancer classification methods such as SVM BWO, CNN, DGC-NB, and GWO-CNN. The accuracy, recall, precision, and F1-score were used to evaluate the performance of WEL-ODKC, and the results show a high accuracy during training and validation. The proposed model efficiently classifies different types of skin cancer images from the two baseline datasets and provides promising results for automatic skin cancer detection." @default.
- W4360614943 created "2023-03-24" @default.
- W4360614943 creator A5014968253 @default.
- W4360614943 creator A5021246850 @default.
- W4360614943 creator A5038774297 @default.
- W4360614943 date "2023-03-23" @default.
- W4360614943 modified "2023-10-18" @default.
- W4360614943 title "WEL-ODKC: weighted extreme learning optimal diagonal-kernels convolution model for accurate classification of skin lesions" @default.
- W4360614943 cites W2773555767 @default.
- W4360614943 cites W2806319584 @default.
- W4360614943 cites W2911590194 @default.
- W4360614943 cites W2986609444 @default.
- W4360614943 cites W2987691085 @default.
- W4360614943 cites W3004010467 @default.
- W4360614943 cites W3012188914 @default.
- W4360614943 cites W3024142021 @default.
- W4360614943 cites W3047352696 @default.
- W4360614943 cites W3048126454 @default.
- W4360614943 cites W3090920939 @default.
- W4360614943 cites W3095523882 @default.
- W4360614943 cites W3097337942 @default.
- W4360614943 cites W3118731580 @default.
- W4360614943 cites W3120040696 @default.
- W4360614943 cites W3136328726 @default.
- W4360614943 cites W3156313549 @default.
- W4360614943 cites W3181411924 @default.
- W4360614943 cites W3194030669 @default.
- W4360614943 cites W3195324944 @default.
- W4360614943 cites W3213860882 @default.
- W4360614943 cites W4200129509 @default.
- W4360614943 cites W4206242083 @default.
- W4360614943 cites W4212852655 @default.
- W4360614943 cites W4239533237 @default.
- W4360614943 cites W4280610173 @default.
- W4360614943 cites W4292476508 @default.
- W4360614943 cites W4307725072 @default.
- W4360614943 doi "https://doi.org/10.1080/13682199.2023.2182557" @default.
- W4360614943 hasPublicationYear "2023" @default.
- W4360614943 type Work @default.
- W4360614943 citedByCount "0" @default.
- W4360614943 crossrefType "journal-article" @default.
- W4360614943 hasAuthorship W4360614943A5014968253 @default.
- W4360614943 hasAuthorship W4360614943A5021246850 @default.
- W4360614943 hasAuthorship W4360614943A5038774297 @default.
- W4360614943 hasConcept C108583219 @default.
- W4360614943 hasConcept C114614502 @default.
- W4360614943 hasConcept C12267149 @default.
- W4360614943 hasConcept C130367717 @default.
- W4360614943 hasConcept C153180895 @default.
- W4360614943 hasConcept C154945302 @default.
- W4360614943 hasConcept C190502265 @default.
- W4360614943 hasConcept C2524010 @default.
- W4360614943 hasConcept C2780150128 @default.
- W4360614943 hasConcept C33923547 @default.
- W4360614943 hasConcept C41008148 @default.
- W4360614943 hasConcept C45347329 @default.
- W4360614943 hasConcept C50644808 @default.
- W4360614943 hasConcept C74193536 @default.
- W4360614943 hasConcept C81363708 @default.
- W4360614943 hasConceptScore W4360614943C108583219 @default.
- W4360614943 hasConceptScore W4360614943C114614502 @default.
- W4360614943 hasConceptScore W4360614943C12267149 @default.
- W4360614943 hasConceptScore W4360614943C130367717 @default.
- W4360614943 hasConceptScore W4360614943C153180895 @default.
- W4360614943 hasConceptScore W4360614943C154945302 @default.
- W4360614943 hasConceptScore W4360614943C190502265 @default.
- W4360614943 hasConceptScore W4360614943C2524010 @default.
- W4360614943 hasConceptScore W4360614943C2780150128 @default.
- W4360614943 hasConceptScore W4360614943C33923547 @default.
- W4360614943 hasConceptScore W4360614943C41008148 @default.
- W4360614943 hasConceptScore W4360614943C45347329 @default.
- W4360614943 hasConceptScore W4360614943C50644808 @default.
- W4360614943 hasConceptScore W4360614943C74193536 @default.
- W4360614943 hasConceptScore W4360614943C81363708 @default.
- W4360614943 hasIssue "4" @default.
- W4360614943 hasLocation W43606149431 @default.
- W4360614943 hasOpenAccess W4360614943 @default.
- W4360614943 hasPrimaryLocation W43606149431 @default.
- W4360614943 hasRelatedWork W2141705618 @default.
- W4360614943 hasRelatedWork W2771907641 @default.
- W4360614943 hasRelatedWork W3156786002 @default.
- W4360614943 hasRelatedWork W3193301557 @default.
- W4360614943 hasRelatedWork W3208266890 @default.
- W4360614943 hasRelatedWork W3217615700 @default.
- W4360614943 hasRelatedWork W4296563828 @default.
- W4360614943 hasRelatedWork W4309224979 @default.
- W4360614943 hasRelatedWork W4312417841 @default.
- W4360614943 hasRelatedWork W4318147857 @default.
- W4360614943 hasVolume "71" @default.
- W4360614943 isParatext "false" @default.
- W4360614943 isRetracted "false" @default.
- W4360614943 workType "article" @default.