Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360615545> ?p ?o ?g. }
- W4360615545 endingPage "1560" @default.
- W4360615545 startingPage "1560" @default.
- W4360615545 abstract "The KPI equation is one of most well-known nonlinear evolution equations, which was first used to described two-dimensional shallow water wavs. Recently, it has found important applications in fluid mechanics, plasma ion acoustic waves, nonlinear optics, and other fields. In the process of studying these topics, it is very important to obtain the exact solutions of the KPI equation. In this paper, a general Riccati equation is treated as an auxiliary equation, which is solved to obtain many new types of solutions through several different function transformations. We solve the KPI equation using this general Riccati equation, and construct ten sets of the infinite series exact solitary wave solution of the KPI equation. The results show that this method is simple and effective for the construction of infinite series solutions of nonlinear evolution models." @default.
- W4360615545 created "2023-03-24" @default.
- W4360615545 creator A5019679045 @default.
- W4360615545 creator A5033840682 @default.
- W4360615545 creator A5061689594 @default.
- W4360615545 date "2023-03-22" @default.
- W4360615545 modified "2023-10-05" @default.
- W4360615545 title "Construction of Infinite Series Exact Solitary Wave Solution of the KPI Equation via an Auxiliary Equation Method" @default.
- W4360615545 cites W1659824194 @default.
- W4360615545 cites W1969474744 @default.
- W4360615545 cites W1971769353 @default.
- W4360615545 cites W1985948414 @default.
- W4360615545 cites W1991593411 @default.
- W4360615545 cites W2000641674 @default.
- W4360615545 cites W2018661297 @default.
- W4360615545 cites W2019076018 @default.
- W4360615545 cites W2026831123 @default.
- W4360615545 cites W2026923035 @default.
- W4360615545 cites W2027711346 @default.
- W4360615545 cites W2052590815 @default.
- W4360615545 cites W2052662871 @default.
- W4360615545 cites W2053833421 @default.
- W4360615545 cites W2059189966 @default.
- W4360615545 cites W2072009618 @default.
- W4360615545 cites W2073817609 @default.
- W4360615545 cites W2075350021 @default.
- W4360615545 cites W2078225380 @default.
- W4360615545 cites W2081373709 @default.
- W4360615545 cites W2086698446 @default.
- W4360615545 cites W2086933121 @default.
- W4360615545 cites W2088651198 @default.
- W4360615545 cites W2088931956 @default.
- W4360615545 cites W2091285670 @default.
- W4360615545 cites W2095561449 @default.
- W4360615545 cites W2099722427 @default.
- W4360615545 cites W2116741266 @default.
- W4360615545 cites W2162387162 @default.
- W4360615545 cites W2280815681 @default.
- W4360615545 cites W2908387402 @default.
- W4360615545 cites W2966242741 @default.
- W4360615545 cites W2982139500 @default.
- W4360615545 cites W2998434462 @default.
- W4360615545 cites W3006035521 @default.
- W4360615545 cites W3034778829 @default.
- W4360615545 cites W3178162666 @default.
- W4360615545 cites W4252983341 @default.
- W4360615545 cites W4287093332 @default.
- W4360615545 cites W4315484195 @default.
- W4360615545 cites W4317743390 @default.
- W4360615545 cites W4319600036 @default.
- W4360615545 cites W4320169002 @default.
- W4360615545 doi "https://doi.org/10.3390/math11061560" @default.
- W4360615545 hasPublicationYear "2023" @default.
- W4360615545 type Work @default.
- W4360615545 citedByCount "0" @default.
- W4360615545 crossrefType "journal-article" @default.
- W4360615545 hasAuthorship W4360615545A5019679045 @default.
- W4360615545 hasAuthorship W4360615545A5033840682 @default.
- W4360615545 hasAuthorship W4360615545A5061689594 @default.
- W4360615545 hasBestOaLocation W43606155451 @default.
- W4360615545 hasConcept C121332964 @default.
- W4360615545 hasConcept C134306372 @default.
- W4360615545 hasConcept C143724316 @default.
- W4360615545 hasConcept C151730666 @default.
- W4360615545 hasConcept C158622935 @default.
- W4360615545 hasConcept C33923547 @default.
- W4360615545 hasConcept C45473103 @default.
- W4360615545 hasConcept C59696629 @default.
- W4360615545 hasConcept C62520636 @default.
- W4360615545 hasConcept C86803240 @default.
- W4360615545 hasConcept C93779851 @default.
- W4360615545 hasConceptScore W4360615545C121332964 @default.
- W4360615545 hasConceptScore W4360615545C134306372 @default.
- W4360615545 hasConceptScore W4360615545C143724316 @default.
- W4360615545 hasConceptScore W4360615545C151730666 @default.
- W4360615545 hasConceptScore W4360615545C158622935 @default.
- W4360615545 hasConceptScore W4360615545C33923547 @default.
- W4360615545 hasConceptScore W4360615545C45473103 @default.
- W4360615545 hasConceptScore W4360615545C59696629 @default.
- W4360615545 hasConceptScore W4360615545C62520636 @default.
- W4360615545 hasConceptScore W4360615545C86803240 @default.
- W4360615545 hasConceptScore W4360615545C93779851 @default.
- W4360615545 hasIssue "6" @default.
- W4360615545 hasLocation W43606155451 @default.
- W4360615545 hasOpenAccess W4360615545 @default.
- W4360615545 hasPrimaryLocation W43606155451 @default.
- W4360615545 hasRelatedWork W1679891066 @default.
- W4360615545 hasRelatedWork W2031675395 @default.
- W4360615545 hasRelatedWork W2172132599 @default.
- W4360615545 hasRelatedWork W2371479323 @default.
- W4360615545 hasRelatedWork W2559572050 @default.
- W4360615545 hasRelatedWork W2614126368 @default.
- W4360615545 hasRelatedWork W2904592692 @default.
- W4360615545 hasRelatedWork W3123004519 @default.
- W4360615545 hasRelatedWork W4293254610 @default.
- W4360615545 hasRelatedWork W60949443 @default.
- W4360615545 hasVolume "11" @default.
- W4360615545 isParatext "false" @default.