Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360615790> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4360615790 endingPage "4071" @default.
- W4360615790 startingPage "4071" @default.
- W4360615790 abstract "Microscopic images in material science documents have increased in number due to the growth and common use of electron microscopy instruments. Through the use of data mining techniques, they are easily accessible and can be obtained from documents published online. As data-driven approaches are becoming increasingly common in the material science field, massively acquired experimental images through microscopy play important roles in terms of developing an artificial intelligence (AI) model for the purposes of automatically diagnosing crucial material structures. However, irrelevant objects (e.g., letters, scale bars, and arrows) that are often present inside original microscopic photos should be removed for the purposes of improving the AI models. To avoid the issue above, we applied four image inpainting algorithms (i.e., shift-net, global and local, contextual attention, and gated convolution) to a learning approach, with the aim of recovering microscopic images in journal papers. We estimated the structural similarity index measure (SSIM) and ℓ1/ℓ2 errors, which are often used as measures of image quality. Lastly, we observed that gated convolution possessed the best performance for inpainting the microscopic images." @default.
- W4360615790 created "2023-03-24" @default.
- W4360615790 creator A5013201243 @default.
- W4360615790 creator A5015463523 @default.
- W4360615790 date "2023-03-22" @default.
- W4360615790 modified "2023-10-03" @default.
- W4360615790 title "Recovering Microscopic Images in Material Science Documents by Image Inpainting" @default.
- W4360615790 cites W1504193762 @default.
- W4360615790 cites W1834627138 @default.
- W4360615790 cites W189587150 @default.
- W4360615790 cites W1992899765 @default.
- W4360615790 cites W1993120651 @default.
- W4360615790 cites W2047643928 @default.
- W4360615790 cites W2055132753 @default.
- W4360615790 cites W2093212899 @default.
- W4360615790 cites W2100415658 @default.
- W4360615790 cites W2115273023 @default.
- W4360615790 cites W2117539524 @default.
- W4360615790 cites W2133665775 @default.
- W4360615790 cites W2295936755 @default.
- W4360615790 cites W264891673 @default.
- W4360615790 cites W2732026016 @default.
- W4360615790 cites W2738588019 @default.
- W4360615790 cites W2798365772 @default.
- W4360615790 cites W2902959869 @default.
- W4360615790 cites W2908453879 @default.
- W4360615790 cites W2958841129 @default.
- W4360615790 cites W2963270367 @default.
- W4360615790 cites W2963420272 @default.
- W4360615790 cites W2974012051 @default.
- W4360615790 cites W2981914352 @default.
- W4360615790 cites W3033000587 @default.
- W4360615790 cites W3043547428 @default.
- W4360615790 cites W3096831136 @default.
- W4360615790 cites W3097593097 @default.
- W4360615790 cites W3123854369 @default.
- W4360615790 cites W3136436906 @default.
- W4360615790 cites W3144890709 @default.
- W4360615790 cites W3183831424 @default.
- W4360615790 cites W3206739365 @default.
- W4360615790 cites W3215230530 @default.
- W4360615790 cites W345598540 @default.
- W4360615790 cites W4296104619 @default.
- W4360615790 doi "https://doi.org/10.3390/app13064071" @default.
- W4360615790 hasPublicationYear "2023" @default.
- W4360615790 type Work @default.
- W4360615790 citedByCount "0" @default.
- W4360615790 crossrefType "journal-article" @default.
- W4360615790 hasAuthorship W4360615790A5013201243 @default.
- W4360615790 hasAuthorship W4360615790A5015463523 @default.
- W4360615790 hasBestOaLocation W43606157901 @default.
- W4360615790 hasConcept C103278499 @default.
- W4360615790 hasConcept C115961682 @default.
- W4360615790 hasConcept C11727466 @default.
- W4360615790 hasConcept C153180895 @default.
- W4360615790 hasConcept C154945302 @default.
- W4360615790 hasConcept C31972630 @default.
- W4360615790 hasConcept C41008148 @default.
- W4360615790 hasConcept C45347329 @default.
- W4360615790 hasConcept C50644808 @default.
- W4360615790 hasConceptScore W4360615790C103278499 @default.
- W4360615790 hasConceptScore W4360615790C115961682 @default.
- W4360615790 hasConceptScore W4360615790C11727466 @default.
- W4360615790 hasConceptScore W4360615790C153180895 @default.
- W4360615790 hasConceptScore W4360615790C154945302 @default.
- W4360615790 hasConceptScore W4360615790C31972630 @default.
- W4360615790 hasConceptScore W4360615790C41008148 @default.
- W4360615790 hasConceptScore W4360615790C45347329 @default.
- W4360615790 hasConceptScore W4360615790C50644808 @default.
- W4360615790 hasFunder F4320322120 @default.
- W4360615790 hasIssue "6" @default.
- W4360615790 hasLocation W43606157901 @default.
- W4360615790 hasOpenAccess W4360615790 @default.
- W4360615790 hasPrimaryLocation W43606157901 @default.
- W4360615790 hasRelatedWork W1574999717 @default.
- W4360615790 hasRelatedWork W166251047 @default.
- W4360615790 hasRelatedWork W2020564930 @default.
- W4360615790 hasRelatedWork W2059339452 @default.
- W4360615790 hasRelatedWork W2068162367 @default.
- W4360615790 hasRelatedWork W2093556634 @default.
- W4360615790 hasRelatedWork W2262668847 @default.
- W4360615790 hasRelatedWork W2370766994 @default.
- W4360615790 hasRelatedWork W2794492057 @default.
- W4360615790 hasRelatedWork W2995115364 @default.
- W4360615790 hasVolume "13" @default.
- W4360615790 isParatext "false" @default.
- W4360615790 isRetracted "false" @default.
- W4360615790 workType "article" @default.