Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360616401> ?p ?o ?g. }
- W4360616401 abstract "Due to the small proportion of target pixels in computed tomography (CT) images and the high similarity with the environment, convolutional neural network-based semantic segmentation models are difficult to develop by using deep learning. Extracting feature information often leads to under- or oversegmentation of lesions in CT images. In this paper, an improved convolutional neural network segmentation model known as RAD-UNet, which is based on the U-Net encoder-decoder architecture, is proposed and applied to lung nodular segmentation in CT images.The proposed RAD-UNet segmentation model includes several improved components: the U-Net encoder is replaced by a ResNet residual network module; an atrous spatial pyramid pooling module is added after the U-Net encoder; and the U-Net decoder is improved by introducing a cross-fusion feature module with channel and spatial attention.The segmentation model was applied to the LIDC dataset and a CT dataset collected by the Affiliated Hospital of Anhui Medical University. The experimental results show that compared with the existing SegNet [14] and U-Net [15] methods, the proposed model demonstrates better lung lesion segmentation performance. On the above two datasets, the mIoU reached 87.76% and 88.13%, and the F1-score reached 93.56% and 93.72%, respectively. Conclusion: The experimental results show that the improved RAD-UNet segmentation method achieves more accurate pixel-level segmentation in CT images of lung tumours and identifies lung nodules better than the SegNet [14] and U-Net [15] models. The problems of under- and oversegmentation that occur during segmentation are solved, effectively improving the image segmentation performance." @default.
- W4360616401 created "2023-03-24" @default.
- W4360616401 creator A5005779844 @default.
- W4360616401 creator A5029946023 @default.
- W4360616401 creator A5035206514 @default.
- W4360616401 date "2023-03-23" @default.
- W4360616401 modified "2023-10-05" @default.
- W4360616401 title "RAD-UNet: Research on an improved lung nodule semantic segmentation algorithm based on deep learning" @default.
- W4360616401 cites W1901129140 @default.
- W4360616401 cites W1997250997 @default.
- W4360616401 cites W2395611524 @default.
- W4360616401 cites W2412782625 @default.
- W4360616401 cites W2565639579 @default.
- W4360616401 cites W2572168885 @default.
- W4360616401 cites W2633044310 @default.
- W4360616401 cites W2643186282 @default.
- W4360616401 cites W2759356748 @default.
- W4360616401 cites W2789566480 @default.
- W4360616401 cites W2800452261 @default.
- W4360616401 cites W2886346046 @default.
- W4360616401 cites W2905810301 @default.
- W4360616401 cites W2908320224 @default.
- W4360616401 cites W2911634634 @default.
- W4360616401 cites W2944540533 @default.
- W4360616401 cites W2962852641 @default.
- W4360616401 cites W2963881378 @default.
- W4360616401 cites W2969411836 @default.
- W4360616401 cites W2970016848 @default.
- W4360616401 cites W2982406227 @default.
- W4360616401 cites W2991445765 @default.
- W4360616401 cites W2994955482 @default.
- W4360616401 cites W3011941780 @default.
- W4360616401 cites W3096502673 @default.
- W4360616401 cites W3153669878 @default.
- W4360616401 cites W3158568493 @default.
- W4360616401 cites W3193926122 @default.
- W4360616401 cites W4225404354 @default.
- W4360616401 cites W4293663012 @default.
- W4360616401 cites W4309947635 @default.
- W4360616401 cites W639708223 @default.
- W4360616401 doi "https://doi.org/10.3389/fonc.2023.1084096" @default.
- W4360616401 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37035155" @default.
- W4360616401 hasPublicationYear "2023" @default.
- W4360616401 type Work @default.
- W4360616401 citedByCount "1" @default.
- W4360616401 crossrefType "journal-article" @default.
- W4360616401 hasAuthorship W4360616401A5005779844 @default.
- W4360616401 hasAuthorship W4360616401A5029946023 @default.
- W4360616401 hasAuthorship W4360616401A5035206514 @default.
- W4360616401 hasBestOaLocation W43606164011 @default.
- W4360616401 hasConcept C108583219 @default.
- W4360616401 hasConcept C111919701 @default.
- W4360616401 hasConcept C11413529 @default.
- W4360616401 hasConcept C118505674 @default.
- W4360616401 hasConcept C124504099 @default.
- W4360616401 hasConcept C138885662 @default.
- W4360616401 hasConcept C142575187 @default.
- W4360616401 hasConcept C153180895 @default.
- W4360616401 hasConcept C154945302 @default.
- W4360616401 hasConcept C155512373 @default.
- W4360616401 hasConcept C160633673 @default.
- W4360616401 hasConcept C2524010 @default.
- W4360616401 hasConcept C2776401178 @default.
- W4360616401 hasConcept C33923547 @default.
- W4360616401 hasConcept C41008148 @default.
- W4360616401 hasConcept C41895202 @default.
- W4360616401 hasConcept C70437156 @default.
- W4360616401 hasConcept C81363708 @default.
- W4360616401 hasConcept C89600930 @default.
- W4360616401 hasConceptScore W4360616401C108583219 @default.
- W4360616401 hasConceptScore W4360616401C111919701 @default.
- W4360616401 hasConceptScore W4360616401C11413529 @default.
- W4360616401 hasConceptScore W4360616401C118505674 @default.
- W4360616401 hasConceptScore W4360616401C124504099 @default.
- W4360616401 hasConceptScore W4360616401C138885662 @default.
- W4360616401 hasConceptScore W4360616401C142575187 @default.
- W4360616401 hasConceptScore W4360616401C153180895 @default.
- W4360616401 hasConceptScore W4360616401C154945302 @default.
- W4360616401 hasConceptScore W4360616401C155512373 @default.
- W4360616401 hasConceptScore W4360616401C160633673 @default.
- W4360616401 hasConceptScore W4360616401C2524010 @default.
- W4360616401 hasConceptScore W4360616401C2776401178 @default.
- W4360616401 hasConceptScore W4360616401C33923547 @default.
- W4360616401 hasConceptScore W4360616401C41008148 @default.
- W4360616401 hasConceptScore W4360616401C41895202 @default.
- W4360616401 hasConceptScore W4360616401C70437156 @default.
- W4360616401 hasConceptScore W4360616401C81363708 @default.
- W4360616401 hasConceptScore W4360616401C89600930 @default.
- W4360616401 hasFunder F4320326664 @default.
- W4360616401 hasLocation W43606164011 @default.
- W4360616401 hasLocation W43606164012 @default.
- W4360616401 hasLocation W43606164013 @default.
- W4360616401 hasOpenAccess W4360616401 @default.
- W4360616401 hasPrimaryLocation W43606164011 @default.
- W4360616401 hasRelatedWork W2517027266 @default.
- W4360616401 hasRelatedWork W2731899572 @default.
- W4360616401 hasRelatedWork W2756241593 @default.
- W4360616401 hasRelatedWork W3002446410 @default.
- W4360616401 hasRelatedWork W3133861977 @default.
- W4360616401 hasRelatedWork W4200173597 @default.