Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360616794> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4360616794 abstract "Researches have demonstrated that microorganisms are indispensable for the nutrition transportation, growth and development of human bodies, and disorder and imbalance of microbiota may lead to the occurrence of diseases. Therefore, it is crucial to study relationships between microbes and diseases. In this manuscript, we proposed a novel prediction model named MADGAN to infer potential microbe-disease associations by combining biological information of microbes and diseases with the generative adversarial networks. To our knowledge, it is the first attempt to use the generative adversarial network to complete this important task. In MADGAN, we firstly constructed different features for microbes and diseases based on multiple similarity metrics. And then, we further adopted graph convolution neural network (GCN) to derive different features for microbes and diseases automatically. Finally, we trained MADGAN to identify latent microbe-disease associations by games between the generation network and the decision network. Especially, in order to prevent over-smoothing during the model training process, we introduced the cross-level weight distribution structure to enhance the depth of the network based on the idea of residual network. Moreover, in order to validate the performance of MADGAN, we conducted comprehensive experiments and case studies based on databases of HMDAD and Disbiome respectively, and experimental results demonstrated that MADGAN not only achieved satisfactory prediction performances, but also outperformed existing state-of-the-art prediction models." @default.
- W4360616794 created "2023-03-24" @default.
- W4360616794 creator A5048507020 @default.
- W4360616794 creator A5054673234 @default.
- W4360616794 creator A5068412241 @default.
- W4360616794 creator A5073216396 @default.
- W4360616794 date "2023-03-23" @default.
- W4360616794 modified "2023-09-27" @default.
- W4360616794 title "MADGAN:A microbe-disease association prediction model based on generative adversarial networks" @default.
- W4360616794 cites W1557339302 @default.
- W4360616794 cites W1981500982 @default.
- W4360616794 cites W2001201713 @default.
- W4360616794 cites W2009170813 @default.
- W4360616794 cites W2012568595 @default.
- W4360616794 cites W2016853666 @default.
- W4360616794 cites W2018831241 @default.
- W4360616794 cites W2037170061 @default.
- W4360616794 cites W2068731812 @default.
- W4360616794 cites W2103032229 @default.
- W4360616794 cites W2107414352 @default.
- W4360616794 cites W2128769815 @default.
- W4360616794 cites W2141222510 @default.
- W4360616794 cites W2153280946 @default.
- W4360616794 cites W2322763599 @default.
- W4360616794 cites W2560060761 @default.
- W4360616794 cites W2567465856 @default.
- W4360616794 cites W2574217686 @default.
- W4360616794 cites W2624135745 @default.
- W4360616794 cites W2737240357 @default.
- W4360616794 cites W2738095712 @default.
- W4360616794 cites W2748076791 @default.
- W4360616794 cites W2765928324 @default.
- W4360616794 cites W2780719316 @default.
- W4360616794 cites W2793180020 @default.
- W4360616794 cites W2807176368 @default.
- W4360616794 cites W2810107880 @default.
- W4360616794 cites W2898769300 @default.
- W4360616794 cites W2901312953 @default.
- W4360616794 cites W2904076541 @default.
- W4360616794 cites W2912654919 @default.
- W4360616794 cites W2952564192 @default.
- W4360616794 cites W2980767508 @default.
- W4360616794 cites W3045879648 @default.
- W4360616794 cites W3096831136 @default.
- W4360616794 cites W3127064341 @default.
- W4360616794 cites W3154550558 @default.
- W4360616794 cites W3195161349 @default.
- W4360616794 cites W3207365242 @default.
- W4360616794 cites W4226348722 @default.
- W4360616794 cites W4294690802 @default.
- W4360616794 cites W4319292963 @default.
- W4360616794 doi "https://doi.org/10.3389/fmicb.2023.1159076" @default.
- W4360616794 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37032881" @default.
- W4360616794 hasPublicationYear "2023" @default.
- W4360616794 type Work @default.
- W4360616794 citedByCount "0" @default.
- W4360616794 crossrefType "journal-article" @default.
- W4360616794 hasAuthorship W4360616794A5048507020 @default.
- W4360616794 hasAuthorship W4360616794A5054673234 @default.
- W4360616794 hasAuthorship W4360616794A5068412241 @default.
- W4360616794 hasAuthorship W4360616794A5073216396 @default.
- W4360616794 hasBestOaLocation W43606167941 @default.
- W4360616794 hasConcept C103278499 @default.
- W4360616794 hasConcept C115961682 @default.
- W4360616794 hasConcept C119857082 @default.
- W4360616794 hasConcept C132525143 @default.
- W4360616794 hasConcept C154945302 @default.
- W4360616794 hasConcept C31972630 @default.
- W4360616794 hasConcept C3770464 @default.
- W4360616794 hasConcept C39890363 @default.
- W4360616794 hasConcept C41008148 @default.
- W4360616794 hasConcept C80444323 @default.
- W4360616794 hasConceptScore W4360616794C103278499 @default.
- W4360616794 hasConceptScore W4360616794C115961682 @default.
- W4360616794 hasConceptScore W4360616794C119857082 @default.
- W4360616794 hasConceptScore W4360616794C132525143 @default.
- W4360616794 hasConceptScore W4360616794C154945302 @default.
- W4360616794 hasConceptScore W4360616794C31972630 @default.
- W4360616794 hasConceptScore W4360616794C3770464 @default.
- W4360616794 hasConceptScore W4360616794C39890363 @default.
- W4360616794 hasConceptScore W4360616794C41008148 @default.
- W4360616794 hasConceptScore W4360616794C80444323 @default.
- W4360616794 hasLocation W43606167941 @default.
- W4360616794 hasLocation W43606167942 @default.
- W4360616794 hasOpenAccess W4360616794 @default.
- W4360616794 hasPrimaryLocation W43606167941 @default.
- W4360616794 hasRelatedWork W2961085424 @default.
- W4360616794 hasRelatedWork W3004765595 @default.
- W4360616794 hasRelatedWork W3046775127 @default.
- W4360616794 hasRelatedWork W3170094116 @default.
- W4360616794 hasRelatedWork W3209574120 @default.
- W4360616794 hasRelatedWork W4205958290 @default.
- W4360616794 hasRelatedWork W4286629047 @default.
- W4360616794 hasRelatedWork W4306321456 @default.
- W4360616794 hasRelatedWork W4306674287 @default.
- W4360616794 hasRelatedWork W4224009465 @default.
- W4360616794 hasVolume "14" @default.
- W4360616794 isParatext "false" @default.
- W4360616794 isRetracted "false" @default.
- W4360616794 workType "article" @default.