Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360620122> ?p ?o ?g. }
- W4360620122 endingPage "104818" @default.
- W4360620122 startingPage "104818" @default.
- W4360620122 abstract "Previous research has revealed that nanofluids are capable of improving the heat transfer performance of energy systems. Researchers devote a considerable deal of attention to multi-walled carbon nanotubes owing to their exceptional features, like superior thermal conductivity. By adding COOH functional groups to multi wall carbon nanotubes (MWCNTs), the carbon nanotubes become hydrophilic, hence enhancing the stability of nanofluids. In this investigation, nanoparticles were characterized using X-Ray Diffraction (XRD) and Brunauer–Emmett–Teller (BET). The durational effects of sonication on three distinct nanofluid concentrations (0.3, 0.1, and 0.05 vol.%) generated with functionalized-multi walled carbon nanotubes (f-MWCNTs/water) on thermal conductivity were also examined. After 80 minutes of sonication, a volume concentration of 0.10 vol% exhibits the best stable long-term value (39.84 mV) based on the findings of studies. As sonication duration increases, particle size decreases, and the 0.30 vol% concentration changes significantly. At a temperature of 50 °C and a sonication period of 20 minutes, the largest increase in thermal conductivity was 5.90% at a concentration of 0.10 vol %. The experimental data acquired through extensive lab-based testing was employed for the development of the meta-model. A modern machine learning technique i.e., extreme gradient boosting (XGBoost) has been employed to model-predict the effects of sonication on thermal conductivity. A contemporary machine learning method Gaussian process regression (GPR) was employed for comparative analysis. The optimal sonication time and long-term stability were determined to be 0.10 vol.% concentration and 80 minutes. All samples remained stable for up to two months during the examination. With proper sonication time and at 0.10 vol.%, improved dispersions and characteristics were obtained. The XGBoost-based model outperformed the GPR-based framework in terms of both reduced errors and greater correlation values. The coefficient of determination (R2) of the XGBoost-based model was observed to be 5.45% higher than that of the GPR-based model." @default.
- W4360620122 created "2023-03-24" @default.
- W4360620122 creator A5003625164 @default.
- W4360620122 creator A5030585958 @default.
- W4360620122 creator A5040989384 @default.
- W4360620122 creator A5088207165 @default.
- W4360620122 date "2023-04-01" @default.
- W4360620122 modified "2023-10-15" @default.
- W4360620122 title "Sonication impact on thermal conductivity of f-MWCNT nanofluids using XGBoost and Gaussian process regression" @default.
- W4360620122 cites W1183662267 @default.
- W4360620122 cites W1969774382 @default.
- W4360620122 cites W1983053221 @default.
- W4360620122 cites W2003695645 @default.
- W4360620122 cites W2016213857 @default.
- W4360620122 cites W2045937144 @default.
- W4360620122 cites W2090609473 @default.
- W4360620122 cites W2122625849 @default.
- W4360620122 cites W2591007475 @default.
- W4360620122 cites W2602194826 @default.
- W4360620122 cites W2611443105 @default.
- W4360620122 cites W2772978762 @default.
- W4360620122 cites W2779934828 @default.
- W4360620122 cites W2799395906 @default.
- W4360620122 cites W2803370956 @default.
- W4360620122 cites W2804446681 @default.
- W4360620122 cites W2885984775 @default.
- W4360620122 cites W2900764140 @default.
- W4360620122 cites W2902917384 @default.
- W4360620122 cites W2905462949 @default.
- W4360620122 cites W2913744128 @default.
- W4360620122 cites W2921567482 @default.
- W4360620122 cites W2922494806 @default.
- W4360620122 cites W2944600191 @default.
- W4360620122 cites W2949066922 @default.
- W4360620122 cites W2960773913 @default.
- W4360620122 cites W2972906003 @default.
- W4360620122 cites W3004946402 @default.
- W4360620122 cites W3035009502 @default.
- W4360620122 cites W3040533943 @default.
- W4360620122 cites W3044992567 @default.
- W4360620122 cites W3083393674 @default.
- W4360620122 cites W3102656105 @default.
- W4360620122 cites W3109024892 @default.
- W4360620122 cites W3109373221 @default.
- W4360620122 cites W3109916648 @default.
- W4360620122 cites W3133856657 @default.
- W4360620122 cites W3133964904 @default.
- W4360620122 cites W3135351349 @default.
- W4360620122 cites W3156191881 @default.
- W4360620122 cites W3160048565 @default.
- W4360620122 cites W3162074431 @default.
- W4360620122 cites W3169203486 @default.
- W4360620122 cites W3174922324 @default.
- W4360620122 cites W3175358325 @default.
- W4360620122 cites W3181688734 @default.
- W4360620122 cites W3186795551 @default.
- W4360620122 cites W3193962426 @default.
- W4360620122 cites W3199959176 @default.
- W4360620122 cites W3217550905 @default.
- W4360620122 cites W4212930661 @default.
- W4360620122 cites W4220882630 @default.
- W4360620122 cites W4224255890 @default.
- W4360620122 cites W4224499205 @default.
- W4360620122 cites W4225826617 @default.
- W4360620122 cites W4281253318 @default.
- W4360620122 cites W4282828305 @default.
- W4360620122 cites W4283265761 @default.
- W4360620122 cites W4285806262 @default.
- W4360620122 cites W4311964444 @default.
- W4360620122 doi "https://doi.org/10.1016/j.jtice.2023.104818" @default.
- W4360620122 hasPublicationYear "2023" @default.
- W4360620122 type Work @default.
- W4360620122 citedByCount "7" @default.
- W4360620122 countsByYear W43606201222023 @default.
- W4360620122 crossrefType "journal-article" @default.
- W4360620122 hasAuthorship W4360620122A5003625164 @default.
- W4360620122 hasAuthorship W4360620122A5030585958 @default.
- W4360620122 hasAuthorship W4360620122A5040989384 @default.
- W4360620122 hasAuthorship W4360620122A5088207165 @default.
- W4360620122 hasConcept C104628117 @default.
- W4360620122 hasConcept C127413603 @default.
- W4360620122 hasConcept C155672457 @default.
- W4360620122 hasConcept C159985019 @default.
- W4360620122 hasConcept C171250308 @default.
- W4360620122 hasConcept C192562407 @default.
- W4360620122 hasConcept C21946209 @default.
- W4360620122 hasConcept C42360764 @default.
- W4360620122 hasConcept C513720949 @default.
- W4360620122 hasConcept C97346530 @default.
- W4360620122 hasConceptScore W4360620122C104628117 @default.
- W4360620122 hasConceptScore W4360620122C127413603 @default.
- W4360620122 hasConceptScore W4360620122C155672457 @default.
- W4360620122 hasConceptScore W4360620122C159985019 @default.
- W4360620122 hasConceptScore W4360620122C171250308 @default.
- W4360620122 hasConceptScore W4360620122C192562407 @default.
- W4360620122 hasConceptScore W4360620122C21946209 @default.
- W4360620122 hasConceptScore W4360620122C42360764 @default.
- W4360620122 hasConceptScore W4360620122C513720949 @default.