Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360620203> ?p ?o ?g. }
- W4360620203 endingPage "778" @default.
- W4360620203 startingPage "761" @default.
- W4360620203 abstract "Preference relation is an effective tool in multi-criteria decision making (MCDM). The fuzzy best-worst method (FBWM), which is an extension of the BWM, is proposed to determine weights for criteria. In the FBWM, the Fuzzy Best-to-others Vector (FBV) and Fuzzy others-to-Worst Vector (FWV) are given. The FBV and FWV can intrinsically formulate one incomplete reciprocal preference relation (IRPR), which we call the FBWM matrix. As the FBWM is designed mainly to determine the weights, and the existing FBWM only uses the min–max problem to derive the weights. Therefore, it is important to develop other effective methods to derive the weights from the FBWM matrix. Deriving the weights from FBWM matrix is converted into deriving the priorities from the corresponding IRPR. In this view, two groups of methods are proposed. One group is for a single FBWM matrix, and the other group is for a group of FBWM matrices. To show the effectiveness and performance of the developed methods, Monte Carlo simulations were implemented. Finally, two examples were used to show how these methods are applied in real decision-making problems. Comparative analyses were performed to show the differences and usefulness of the proposed methods." @default.
- W4360620203 created "2023-03-24" @default.
- W4360620203 creator A5018259915 @default.
- W4360620203 creator A5043909146 @default.
- W4360620203 creator A5076657750 @default.
- W4360620203 creator A5086182259 @default.
- W4360620203 creator A5090989509 @default.
- W4360620203 date "2023-07-01" @default.
- W4360620203 modified "2023-10-18" @default.
- W4360620203 title "Deriving priorities from the fuzzy best-worst method matrix and its applications: A perspective of incomplete reciprocal preference relation" @default.
- W4360620203 cites W107350978 @default.
- W4360620203 cites W1164772652 @default.
- W4360620203 cites W1979733078 @default.
- W4360620203 cites W1983619252 @default.
- W4360620203 cites W2006257185 @default.
- W4360620203 cites W2011258762 @default.
- W4360620203 cites W2023024928 @default.
- W4360620203 cites W2023689789 @default.
- W4360620203 cites W2031499317 @default.
- W4360620203 cites W2033401964 @default.
- W4360620203 cites W2043098439 @default.
- W4360620203 cites W2044568429 @default.
- W4360620203 cites W2052087572 @default.
- W4360620203 cites W2063078085 @default.
- W4360620203 cites W2079847245 @default.
- W4360620203 cites W2088859895 @default.
- W4360620203 cites W2089336319 @default.
- W4360620203 cites W2137624040 @default.
- W4360620203 cites W2189718286 @default.
- W4360620203 cites W2330805312 @default.
- W4360620203 cites W2518891783 @default.
- W4360620203 cites W2520326714 @default.
- W4360620203 cites W2557723323 @default.
- W4360620203 cites W2568081791 @default.
- W4360620203 cites W2588613181 @default.
- W4360620203 cites W2601826487 @default.
- W4360620203 cites W2619543466 @default.
- W4360620203 cites W2765108619 @default.
- W4360620203 cites W2809029195 @default.
- W4360620203 cites W2901128613 @default.
- W4360620203 cites W2903709878 @default.
- W4360620203 cites W2912784064 @default.
- W4360620203 cites W2947290655 @default.
- W4360620203 cites W2969947121 @default.
- W4360620203 cites W3006340481 @default.
- W4360620203 cites W3082147753 @default.
- W4360620203 cites W3112185976 @default.
- W4360620203 cites W3190556992 @default.
- W4360620203 cites W3215543050 @default.
- W4360620203 cites W4200426535 @default.
- W4360620203 cites W4200573865 @default.
- W4360620203 cites W4239177862 @default.
- W4360620203 cites W4283067317 @default.
- W4360620203 cites W4286567542 @default.
- W4360620203 cites W4309478923 @default.
- W4360620203 cites W4313680681 @default.
- W4360620203 cites W4317358044 @default.
- W4360620203 doi "https://doi.org/10.1016/j.ins.2023.03.125" @default.
- W4360620203 hasPublicationYear "2023" @default.
- W4360620203 type Work @default.
- W4360620203 citedByCount "1" @default.
- W4360620203 countsByYear W43606202032023 @default.
- W4360620203 crossrefType "journal-article" @default.
- W4360620203 hasAuthorship W4360620203A5018259915 @default.
- W4360620203 hasAuthorship W4360620203A5043909146 @default.
- W4360620203 hasAuthorship W4360620203A5076657750 @default.
- W4360620203 hasAuthorship W4360620203A5086182259 @default.
- W4360620203 hasAuthorship W4360620203A5090989509 @default.
- W4360620203 hasConcept C105795698 @default.
- W4360620203 hasConcept C106487976 @default.
- W4360620203 hasConcept C11105738 @default.
- W4360620203 hasConcept C124101348 @default.
- W4360620203 hasConcept C126255220 @default.
- W4360620203 hasConcept C12713177 @default.
- W4360620203 hasConcept C138885662 @default.
- W4360620203 hasConcept C154945302 @default.
- W4360620203 hasConcept C159985019 @default.
- W4360620203 hasConcept C17744445 @default.
- W4360620203 hasConcept C192562407 @default.
- W4360620203 hasConcept C199360897 @default.
- W4360620203 hasConcept C199539241 @default.
- W4360620203 hasConcept C20701700 @default.
- W4360620203 hasConcept C25343380 @default.
- W4360620203 hasConcept C2777062324 @default.
- W4360620203 hasConcept C2777742833 @default.
- W4360620203 hasConcept C2778029271 @default.
- W4360620203 hasConcept C2781249084 @default.
- W4360620203 hasConcept C33923547 @default.
- W4360620203 hasConcept C41008148 @default.
- W4360620203 hasConcept C41895202 @default.
- W4360620203 hasConcept C58166 @default.
- W4360620203 hasConceptScore W4360620203C105795698 @default.
- W4360620203 hasConceptScore W4360620203C106487976 @default.
- W4360620203 hasConceptScore W4360620203C11105738 @default.
- W4360620203 hasConceptScore W4360620203C124101348 @default.
- W4360620203 hasConceptScore W4360620203C126255220 @default.
- W4360620203 hasConceptScore W4360620203C12713177 @default.
- W4360620203 hasConceptScore W4360620203C138885662 @default.