Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360745415> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4360745415 endingPage "110961" @default.
- W4360745415 startingPage "110961" @default.
- W4360745415 abstract "Data-driven predictive control (DDPC) has been recently proposed as an effective alternative to traditional model-predictive control (MPC) for its unique features of being time-efficient and unbiased with respect to the oracle solution. Nonetheless, it has also been observed that noise may strongly jeopardize the final closed-loop performance, since it affects both the data-based system representation and the control update computed from the online measurements. Recent studies have shown that regularization is potentially a successful tool to counteract the effect of noise. At the same time, regularization requires the tuning of a set of penalty terms, whose choice might be practically difficult without closed-loop experiments In this paper, by means of subspace identification tools, we pursue a three-fold goal: (i) we set up a unified framework for the existing regularized data-driven predictive control schemes for stochastic systems; (ii) we introduce γ-DDPC, an efficient two-stage scheme that splits the optimization problem in two parts: fitting the initial conditions and optimizing the future performance, while guaranteeing constraint satisfaction; (iii) we discuss the role of regularization for data-driven predictive control, providing new insight on when and how it should be applied. A benchmark numerical case study finally illustrates the performance of γ-DDPC, showing how controller design can be simplified in terms of tuning effort and computational complexity when benefiting from the insights coming from the subspace identification realm." @default.
- W4360745415 created "2023-03-24" @default.
- W4360745415 creator A5057454932 @default.
- W4360745415 creator A5059501084 @default.
- W4360745415 creator A5062648585 @default.
- W4360745415 date "2023-06-01" @default.
- W4360745415 modified "2023-09-27" @default.
- W4360745415 title "Data-driven predictive control in a stochastic setting: a unified framework" @default.
- W4360745415 cites W1531324864 @default.
- W4360745415 cites W1841556254 @default.
- W4360745415 cites W1975050219 @default.
- W4360745415 cites W1990032845 @default.
- W4360745415 cites W1993170675 @default.
- W4360745415 cites W2006905088 @default.
- W4360745415 cites W2018691083 @default.
- W4360745415 cites W2024942135 @default.
- W4360745415 cites W2036644718 @default.
- W4360745415 cites W2045959051 @default.
- W4360745415 cites W2047541484 @default.
- W4360745415 cites W2105343563 @default.
- W4360745415 cites W2105812833 @default.
- W4360745415 cites W2111232193 @default.
- W4360745415 cites W2120322256 @default.
- W4360745415 cites W2130212796 @default.
- W4360745415 cites W2148469736 @default.
- W4360745415 cites W2545910513 @default.
- W4360745415 cites W2939493559 @default.
- W4360745415 cites W2952672134 @default.
- W4360745415 cites W2979207987 @default.
- W4360745415 cites W2995979059 @default.
- W4360745415 cites W3029097646 @default.
- W4360745415 cites W4242688646 @default.
- W4360745415 doi "https://doi.org/10.1016/j.automatica.2023.110961" @default.
- W4360745415 hasPublicationYear "2023" @default.
- W4360745415 type Work @default.
- W4360745415 citedByCount "1" @default.
- W4360745415 countsByYear W43607454152023 @default.
- W4360745415 crossrefType "journal-article" @default.
- W4360745415 hasAuthorship W4360745415A5057454932 @default.
- W4360745415 hasAuthorship W4360745415A5059501084 @default.
- W4360745415 hasAuthorship W4360745415A5062648585 @default.
- W4360745415 hasBestOaLocation W43607454151 @default.
- W4360745415 hasConcept C126255220 @default.
- W4360745415 hasConcept C154945302 @default.
- W4360745415 hasConcept C172205157 @default.
- W4360745415 hasConcept C2775924081 @default.
- W4360745415 hasConcept C2776135515 @default.
- W4360745415 hasConcept C2780440489 @default.
- W4360745415 hasConcept C32834561 @default.
- W4360745415 hasConcept C33923547 @default.
- W4360745415 hasConcept C41008148 @default.
- W4360745415 hasConcept C47446073 @default.
- W4360745415 hasConceptScore W4360745415C126255220 @default.
- W4360745415 hasConceptScore W4360745415C154945302 @default.
- W4360745415 hasConceptScore W4360745415C172205157 @default.
- W4360745415 hasConceptScore W4360745415C2775924081 @default.
- W4360745415 hasConceptScore W4360745415C2776135515 @default.
- W4360745415 hasConceptScore W4360745415C2780440489 @default.
- W4360745415 hasConceptScore W4360745415C32834561 @default.
- W4360745415 hasConceptScore W4360745415C33923547 @default.
- W4360745415 hasConceptScore W4360745415C41008148 @default.
- W4360745415 hasConceptScore W4360745415C47446073 @default.
- W4360745415 hasFunder F4320321873 @default.
- W4360745415 hasLocation W43607454151 @default.
- W4360745415 hasLocation W43607454152 @default.
- W4360745415 hasOpenAccess W4360745415 @default.
- W4360745415 hasPrimaryLocation W43607454151 @default.
- W4360745415 hasRelatedWork W1531324864 @default.
- W4360745415 hasRelatedWork W2014376512 @default.
- W4360745415 hasRelatedWork W2017798257 @default.
- W4360745415 hasRelatedWork W2136182725 @default.
- W4360745415 hasRelatedWork W2358702035 @default.
- W4360745415 hasRelatedWork W2388247099 @default.
- W4360745415 hasRelatedWork W2391551851 @default.
- W4360745415 hasRelatedWork W2583854149 @default.
- W4360745415 hasRelatedWork W386975017 @default.
- W4360745415 hasRelatedWork W2752447929 @default.
- W4360745415 hasVolume "152" @default.
- W4360745415 isParatext "false" @default.
- W4360745415 isRetracted "false" @default.
- W4360745415 workType "article" @default.