Matches in SemOpenAlex for { <https://semopenalex.org/work/W4360746479> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4360746479 abstract "You have accessJournal of UrologyCME1 Apr 2023MP09-01 DETECTION OF CLINICALLY SIGNIFICANT PROSTATE CANCER ON MRI: A COMPARISON OF AN ARTIFICIAL INTELLIGENCE MODEL VERSUS RADIOLOGISTS Simon John Christoph Soerensen, Richard E. Fan, Indrani Bhattacharya, David S. Lim, Sarir Ahmadi, Xinran Li, Sulaiman Vesal, Mirabela Rusu, and Geoffrey A. Sonn Simon John Christoph SoerensenSimon John Christoph Soerensen More articles by this author , Richard E. FanRichard E. Fan More articles by this author , Indrani BhattacharyaIndrani Bhattacharya More articles by this author , David S. LimDavid S. Lim More articles by this author , Sarir AhmadiSarir Ahmadi More articles by this author , Xinran LiXinran Li More articles by this author , Sulaiman VesalSulaiman Vesal More articles by this author , Mirabela RusuMirabela Rusu More articles by this author , and Geoffrey A. SonnGeoffrey A. Sonn More articles by this author View All Author Informationhttps://doi.org/10.1097/JU.0000000000003224.01AboutPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract INTRODUCTION AND OBJECTIVE: Automated detection of prostate cancer on magnetic resonance imaging (MRI) may help target biopsies and avoid unnecessary biopsies of false-positive lesions. We sought to develop an artificial intelligence (AI) model to rapidly and accurately identify cancer foci on MRI and compare its performance against radiologists. METHODS: A total of 1504 subjects underwent multiparametric MRI at more than 30 institutions in the US, followed by MRI-ultrasound fusion biopsy at one institution. We used T2-weighted images (T2WI), apparent diffusion coefficient maps (ADC), and diffusion-weighted imaging (DWI) from 1404 cases to train an AI model. MRI lesions were initially identified and outlined by a radiologist using T2WIs, DWIs, ADC, and contrast enhanced images (DCE). Cancers were confirmed by biopsy. Only lesions containing Gleason 3+3 (≥ 40% cancer core length) or Gleason ≥3+4 (any amount) in at least one targeted biopsy core were considered for training and testing the model. All other MRI lesions were removed. Systematic cores with significant cancer were also included for model training. We tested the AI model on 100 independent cases and compared it against trained radiologists. We computed lesion-level AUC, sensitivity, specificity, and negative predictive value (NPV). RESULTS: AI and radiologists had similar performances across all metrics, and all differences were non-significant. The AI model had an AUC of 0.79±0.22, NPV of 0.66±0.26, sensitivity of 0.34±0.41, and specificity of 0.99±0.05. Radiologists had an AUC of 0.81±0.22, NPV of 0.69±0.28, sensitivity of 0.37±0.45, and specificity of 0.99±0.05. CONCLUSIONS: In this study, we trained and tested an AI model on a large and diverse multi-institutional cohort of MRIs. The model matched the performance of radiologist experts. In future work, we envision comparing model performance against radiologists at different skill levels and comparing radiologist + AI vs radiologist performance alone. Source of Funding: Departments of Radiology and Urology, Stanford University, National Cancer Institute of the National Institutes of Health (R37CA260346 to M.R), and the generous philanthropic support of our patients (G.S.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health © 2023 by American Urological Association Education and Research, Inc.FiguresReferencesRelatedDetails Volume 209Issue Supplement 4April 2023Page: e103 Advertisement Copyright & Permissions© 2023 by American Urological Association Education and Research, Inc.MetricsAuthor Information Simon John Christoph Soerensen More articles by this author Richard E. Fan More articles by this author Indrani Bhattacharya More articles by this author David S. Lim More articles by this author Sarir Ahmadi More articles by this author Xinran Li More articles by this author Sulaiman Vesal More articles by this author Mirabela Rusu More articles by this author Geoffrey A. Sonn More articles by this author Expand All Advertisement PDF downloadLoading ..." @default.
- W4360746479 created "2023-03-24" @default.
- W4360746479 creator A5009007281 @default.
- W4360746479 creator A5010990212 @default.
- W4360746479 creator A5015490045 @default.
- W4360746479 creator A5027586928 @default.
- W4360746479 creator A5039266973 @default.
- W4360746479 creator A5049258203 @default.
- W4360746479 creator A5051120030 @default.
- W4360746479 creator A5063971801 @default.
- W4360746479 creator A5068964887 @default.
- W4360746479 date "2023-04-01" @default.
- W4360746479 modified "2023-10-16" @default.
- W4360746479 title "MP09-01 DETECTION OF CLINICALLY SIGNIFICANT PROSTATE CANCER ON MRI: A COMPARISON OF AN ARTIFICIAL INTELLIGENCE MODEL VERSUS RADIOLOGISTS" @default.
- W4360746479 doi "https://doi.org/10.1097/ju.0000000000003224.01" @default.
- W4360746479 hasPublicationYear "2023" @default.
- W4360746479 type Work @default.
- W4360746479 citedByCount "0" @default.
- W4360746479 crossrefType "journal-article" @default.
- W4360746479 hasAuthorship W4360746479A5009007281 @default.
- W4360746479 hasAuthorship W4360746479A5010990212 @default.
- W4360746479 hasAuthorship W4360746479A5015490045 @default.
- W4360746479 hasAuthorship W4360746479A5027586928 @default.
- W4360746479 hasAuthorship W4360746479A5039266973 @default.
- W4360746479 hasAuthorship W4360746479A5049258203 @default.
- W4360746479 hasAuthorship W4360746479A5051120030 @default.
- W4360746479 hasAuthorship W4360746479A5063971801 @default.
- W4360746479 hasAuthorship W4360746479A5068964887 @default.
- W4360746479 hasConcept C121608353 @default.
- W4360746479 hasConcept C126322002 @default.
- W4360746479 hasConcept C126838900 @default.
- W4360746479 hasConcept C143409427 @default.
- W4360746479 hasConcept C19527891 @default.
- W4360746479 hasConcept C2775934546 @default.
- W4360746479 hasConcept C2780192828 @default.
- W4360746479 hasConcept C2985322473 @default.
- W4360746479 hasConcept C2989005 @default.
- W4360746479 hasConcept C70816921 @default.
- W4360746479 hasConcept C71924100 @default.
- W4360746479 hasConceptScore W4360746479C121608353 @default.
- W4360746479 hasConceptScore W4360746479C126322002 @default.
- W4360746479 hasConceptScore W4360746479C126838900 @default.
- W4360746479 hasConceptScore W4360746479C143409427 @default.
- W4360746479 hasConceptScore W4360746479C19527891 @default.
- W4360746479 hasConceptScore W4360746479C2775934546 @default.
- W4360746479 hasConceptScore W4360746479C2780192828 @default.
- W4360746479 hasConceptScore W4360746479C2985322473 @default.
- W4360746479 hasConceptScore W4360746479C2989005 @default.
- W4360746479 hasConceptScore W4360746479C70816921 @default.
- W4360746479 hasConceptScore W4360746479C71924100 @default.
- W4360746479 hasIssue "Supplement 4" @default.
- W4360746479 hasLocation W43607464791 @default.
- W4360746479 hasOpenAccess W4360746479 @default.
- W4360746479 hasPrimaryLocation W43607464791 @default.
- W4360746479 hasRelatedWork W1979374145 @default.
- W4360746479 hasRelatedWork W2046981875 @default.
- W4360746479 hasRelatedWork W2145420319 @default.
- W4360746479 hasRelatedWork W2153860297 @default.
- W4360746479 hasRelatedWork W2156329300 @default.
- W4360746479 hasRelatedWork W2157814660 @default.
- W4360746479 hasRelatedWork W2461770641 @default.
- W4360746479 hasRelatedWork W2805225705 @default.
- W4360746479 hasRelatedWork W3088453170 @default.
- W4360746479 hasRelatedWork W3171213747 @default.
- W4360746479 hasVolume "209" @default.
- W4360746479 isParatext "false" @default.
- W4360746479 isRetracted "false" @default.
- W4360746479 workType "article" @default.